• Title/Summary/Keyword: Spoilage

Search Result 369, Processing Time 0.022 seconds

Preservation of Takju by Pasteurization (저온살균법에 의한 탁주의 보존성 증진)

  • 배상면;김헌진;고영희;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.322-325
    • /
    • 1990
  • During transportation and preservation of Takju, alcohol fermentation has continued to produce $C0_2$ from residual sugar and frequently spoiled owing to bacterial contaminants wich produce organic acids. The authors could preserve Takju for more than 50 days at room temperature by pasteurization without any changes of quality. For the optimal condition of pasteurization, fresh Takju was heated at various temperatures and times. D-Value of the Saccharomyces sp. which isolated from Takju collected at seoul area was 19 see at $55^{\circ}C$. Non-spore forming bacterial contaminants, most of which known to cause acid-spoilage, were decreased when heated at $55^{\circ}C$ for 5 min. The optimal pasteurization condition of Takju was at $55^{\circ}C$ for 10 min. Spore forming bacterial contaminants, considered to be EuciiLw sp., were not sterilized after pasteurized at the optimal condition. However, the spore-forming bacteria could not increase any more and also not cause increment of acidity during preservation even at room temperature for 50 days. Reducing sugar was increased during storage of Takju after pasteurization. This suggests that the residual glucoamylase in Takju is still active after pasteurizsation and keep sweet taste.

  • PDF

Quality assessment and acceptability of whiteleg shrimp (Litopenaeus vannamei) using biochemical parameters

  • Kim, So-Hyun;Jung, Eun-Ju;Hong, Dong-Lee;Lee, Seung-Eun;Lee, Yang-Bong;Cho, Sueng-mok;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.9
    • /
    • pp.21.1-21.10
    • /
    • 2020
  • Background: This study aimed to provide a basic standard for assessing freshness and acceptability of whiteleg shrimp (Litopenaeus vannamei). Methods: It was divided into whole body and meat and stored at 25 ℃ to evaluate both quality and freshness changes that occur over time. The shelf life of shrimp was estimated as 17 and 20 h for whole body and meat, respectively. Results: In chemical analysis, K-value increased from 9.96 to 12.32% to a maximum of 75.14%, and TVB-N increased from 1.86 mg/100 g to 34.71 mg/100 g. For volatile sulfur compounds, methyl mercaptan and dimethyl disulfide increased from 0.00 mg/100 g to 1.10 mg/100 g and 1.26 mg/100 g, respectively, rapidly increasing with decreasing freshness. Conclusion: Changes in all biochemical indicators significantly correlated with the sensory evaluation results. This study contributes to the knowledge about whiteleg shrimp spoilage and freshness, providing a basis for developing methods to improve shrimp quality control and management.

Use of Atmospheric Pressure Cold Plasma for Meat Industry

  • Lee, Juri;Lee, Cheol Woo;Yong, Hae In;Lee, Hyun Jung;Jo, Cheorun;Jung, Samooel
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.477-485
    • /
    • 2017
  • Novel, effective methods to control and prevent spoilage and contamination by pathogenic microorganisms in meat and meat products are in constant demand. Non-thermal pasteurization is an ideal method for the preservation of meat and meat products because it does not use heat during the pasteurization process. Atmospheric pressure cold plasma (APCP) is a new technology for the non-thermal pasteurization of meat and meat products. Several recent studies have shown that APCP treatment reduces the number of pathogenic microorganisms in meat and meat products. Furthermore, APCP treatment can be used to generate nitrite, which is an essential component of the curing process. Here, we introduce the effectiveness of APCP treatment as a pasteurization method and/or curing process for use in the meat and meat product processing industry.

Food Preservation Technology at Subzero Temperatures: A Review

  • Shafel, Tim;Lee, Seung Hyun;Jun, Soojin
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.261-270
    • /
    • 2015
  • Purpose: Cold storage is the most popular method used to preserve highly perishable foods such as beef and fish. However, at refrigeration temperatures, the shelf life of these foods is limited, and spoilage leads to massive food waste. Moreover, freezing significantly affects the food's properties. Ice crystallization and growth during freezing can cause irreversible textural damage to foods through volumetric expansion, moisture migration induced by osmotic pressure gradients, and concentration of solutes,which can lead to protein denaturation. Methods: Although freezing can preserve perishable foods for months, these disruptive changes decrease the consumer's perception of the food's quality. Therefore, the development and testing of new and improved cold storage technologies is a worthwhile pursuit. Results: The process of maintaining a food product in an unfrozen state below its equilibrium freezing temperature is known as supercooling. As supercooling has been shown to offer a considerable improvement over refrigeration for extending a perishable product's shelf life, implementation of supercooling in households and commercial refrigeration units would help diminish food waste. Conclusions: A commercially viable supercooling unit for all perishable food items is currently being developed and fabricated. Buildup of this technology will provide a meaningful improvement in the cold storage of perishable foods, and will have a significant impact on the refrigeration market as a whole.

evelopment of biological methods for improving the storage qualities of sweet persimmon harvested in Gyeongsangnam-do (생물학적 처리방법에 의한 경남산 단감의 저장성 향상을 위한 기술개발)

  • 조성환;김영록
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.263-270
    • /
    • 1995
  • In order to promote the prevention of microbial and enzymatic spoilage and to retain the freshiness, sweet persimmons harvested in Gyeongsangnam-do were treated with graperfruit seed extract(GFSE)-CaCO3 mixture and stored in the proper packaging conditions. A low concentration of GFSE showed effective growth inhibition of plant pathological bacteria and fungi, Enterobacter pyrinus and Fusarium sp., which were involved in the decay of fruits and vegetables. GFSE was stable to heat treatment; its antimicrobial activity was not changed by heat treatment upto 10$0^{\circ}C$. However, when the temperature was raised to 12$0^{\circ}C$, about 90% of total activity was retained within 30 min. GFSE was also highly stable to broad pH changes; its activity was not changed in the range of pH 2.0 to pH 12.0. The physiological function of cell membrane in the spores of Bacillus cereus and the hyphae of Fusarium sp. was destroyed by treating with GFSE. It was observed that treating sweet persimmons with GFSE minxture and storing them in strech-wrapped packages could prolong the greshness of sweet persimmons and reduce quality deterioration.

  • PDF

Effects of Aqueous Ozone Combined with Organic Acids on Microflora Inactivation in the Raw Materials of Saengsik

  • Bang, Woo-Suk;Eom, Young-Ran;Eun, Jong-Bang;Oh, Deog-Hwan
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.958-962
    • /
    • 2007
  • This study was conducted to determine the effects of microorganism inactivation using 3 ppm of aqueous ozone (AO), 1% citric acid, 1% lactic acid, and 1% acetic acid alone, as well as the combinations of AO and organic acid, for washing the raw materials of saengsik (carrot, cabbage, glutinous rice, barley) with or without agitation. The combination of AO and 1% of each organic acid significantly inactivated spoilage bacteria in both the vegetables and the grains (p<0.05). However, in the glutinous rice, no inhibitory effects were shown for total aerobic bacteria by using water, ozone, or the combination of AO with citric acid or lactic acid, without agitation. Microbial inactivation was enhanced with agitation in the grains, whereas dipping (no agitation) treatments showed better inhibitory effects in the vegetables than in the barley, suggesting that washing processes should take into account the type of food material.

A Study on Optimization of The Concentration of Cutting Oil to be used for Cutting (절삭가공(切削加工)에 사용(使用)되는 절삭유(切削油)의 농도최적화(濃度最適化)에 관(關)한 연구(硏究))

  • Kim, Gue-Tae;Kim, Won-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.3
    • /
    • pp.95-102
    • /
    • 2013
  • It is indispensable to modern society metal processing since the industrialized rapidly, but it is a metalworking cutting fluid immediately. In addition, this means selecting a emulsion on the basis of quality criteria processing method, the material of the material, cutting depth, cutting speed, Djourou fence Liang, and surface roughness, cutting oil, the shape of the device based on the emulsion, I will be the structure of the tank, filtration equipment also changes. In particular, acting bacteria is now breeding in response to the passage of time due to metal ion degradation due to heat generated hydraulic fluid leakage, humidity tung, during processing, seep from processing material at the time of processing the water-soluble cutting oil for generating the malodor by dropping significantly the performance of the cutting oil to corruption from, sometimes by introducing various additives to suppress spoilage in advance. In this study, we expect the effect of the cost reduction in the extension of fluid replacement cycle through the application of the management apparatus and deep understanding in the management of cutting fluid, the working environment through the understanding and interest of workers in the production site more than anything I try to become useful for the improvement.

Effects of the Heat-Treatment on the Nutritional Quality of Milk - I. Historical Development of the Heat-Treatment Technology in Milk - (우유의 열처리가 우유품질과 영양가에 미치는 영향 - I. 우유 열처리 기술의 발달사 -)

  • Jung, Anna;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.271-278
    • /
    • 2016
  • The main purpose of milk heat-treatment is to improve milk safety for consumer by destroying foodborne pathogens. Secondly, heat-treatment of milk is to increase maintaining milk quality by inactivating spoilage microorganisms and enzymes. Pasteurization is defined by the International Dairy Federation (IDF, 1986) as a process applied with the aim of avoiding public health hazards arising from pathogens associated with milk, by heat treatment which is consistent with minimal chemical, physical and organoleptic changes in the product. Milk pasteurization were adjusted to $63{\sim}65^{\circ}C$ for 30 minutes (Low temperature long time, LTLT) or $72{\sim}75^{\circ}C$ for 15 seconds (High temperature short time, HTST) to inactivate the pathogens such as Mycobacterium bovis, the organism responsible for tuberculosis. Ultra-high temperature processing (UHT) sterilizes food by heating it above $135^{\circ}C$ ($275^{\circ}F$) - the temperature required to destroy the all microorganisms and spores in milk - for few seconds. The first LTLT system (batch pasteurization) was introduced in Germany in 1895 and in the USA in 1907. Then, HTST continuous processes were developed between 1920 and 1927. UHT milk was first developed in the 1960s and became generally available for consumption in the 1970s. At present, UHT is most commonly used in milk production.

Effects of Heat Treatment on the Nutritional Quality of Milk: V. The Effect of Heat Treatment on Milk Enzymes (우유의 열처리가 우유품질과 영양가에 미치는 영향: V. 열처리가 우유효소에 미치는 영향)

  • Shin, Hanseob;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.49-71
    • /
    • 2018
  • Heat treatment is the most popular processing technique in the dairy industry. Its main purpose is to destroy the pathogenic and spoilage bacteria in order to ensure that the milk is safe throughout its shelf life. The protease and lipase that are present in raw milk might reduce the quality of milk. Plasmin and protease, which are produced by psychrotrophic bacteria, are recognized as the main causes of the deterioration in milk flavor and taste during storage. The enzymes in raw milk can be inactivated by heat treatment. However, the temperature of inactivation varies according to the type of enzyme. For example, some Pseudomonas spp. produce heat-resistant proteolytic and lipolytic enzymes that may not be fully inactivated by the low temperature and long time (LTLT) treatment. These types of enzymes are inhibited only by the high temperature and short time (HTST) or ultra-high temperature (UHT) treatment of milk.

Analysis of Temperature Effects on Microbial Growth Parameters and Estimation of Food Shelf Life with Confidence Band

  • Park, Jin-Pyo;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • As a way to account for the variability of the primary model parameters in the secondary modeling of microbial growth, three different regression approaches were compared in determining the confidence interval of the temperature-dependent primary model parameters and the estimated microbial growth during storage: bootstrapped regression with all the individual primary model parameter values; bootstrapped regression with average values at each temperature; and simple regression with regression lines of 2.5% and 97.5% percentile values. Temperature dependences of converted parameters (log $q_o$, ${\mu}_{max}^{1/2}$, log $N_{max}$) of hypothetical initial physiological state, maximum specific growth rate, and maximum cell density in Baranyi's model were subjected to the regression by quadratic, linear, and linear function, respectively. With an advantage of extracting the primary model parameters instantaneously at any temperature by using mathematical functions, regression lines of 2.5% and 97.5% percentile values were capable of accounting for variation in experimental data of microbial growth under constant and fluctuating temperature conditions.