Browse > Article
http://dx.doi.org/10.5851/kosfa.2017.37.4.477

Use of Atmospheric Pressure Cold Plasma for Meat Industry  

Lee, Juri (Division of Animal and Dairy Science, Chungnam National University)
Lee, Cheol Woo (Division of Animal and Dairy Science, Chungnam National University)
Yong, Hae In (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University)
Lee, Hyun Jung (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University)
Jo, Cheorun (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University)
Jung, Samooel (Division of Animal and Dairy Science, Chungnam National University)
Publication Information
Food Science of Animal Resources / v.37, no.4, 2017 , pp. 477-485 More about this Journal
Abstract
Novel, effective methods to control and prevent spoilage and contamination by pathogenic microorganisms in meat and meat products are in constant demand. Non-thermal pasteurization is an ideal method for the preservation of meat and meat products because it does not use heat during the pasteurization process. Atmospheric pressure cold plasma (APCP) is a new technology for the non-thermal pasteurization of meat and meat products. Several recent studies have shown that APCP treatment reduces the number of pathogenic microorganisms in meat and meat products. Furthermore, APCP treatment can be used to generate nitrite, which is an essential component of the curing process. Here, we introduce the effectiveness of APCP treatment as a pasteurization method and/or curing process for use in the meat and meat product processing industry.
Keywords
atmospheric pressure cold plasma; meat; meat products; pasteurization; nitrite;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ercan, U. K., Smith, J., Ji, H. F., Brooks, A. D., and Joshi, S. G. (2016) Chemical changes in nonthermal plasma-treated N-Acetylcysteine (NAC) solution and their contribution to bacterial inactivation. Sci. Rep. 6, 20365.   DOI
2 Han, L., Patil, S., Boehm, D., Milosavljevic, V., Cullen, P. J., and Bourke, P. (2016) Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microb. 82, 450-458.   DOI
3 Jayasena, D. D., Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., and Jo, C. (2015) Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiol. 46, 51-57.   DOI
4 Jung, S., Kim, H. J., Park, S., Yong, H. I., Choe, J. H., Jeon, H. J., Choe, W., and Jo, C. (2015) The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsiontype sausage. Meat Sci. 108, 132-137.   DOI
5 Jung, S., Lee, C. W., Lee, J., Yong, H. I., Yum, S. J., Jeong, H. G., and Jo, C. (2017a) Increase in nitrite content and functionality of ethanolic extracts of Perilla frutescens by treatment with atmospheric pressure plasma. Food Chem. 237, 191-197.   DOI
6 Jung, S., Lee, J., Lim, Y., Choe, W., Yong, H. I., and Jo, C. (2017b) Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innov. Food Sci. Emerg. Technol. 39, 113-118.   DOI
7 Kim, B., Yun, H., Jung, S., Jung, Y., Jung, H., Choe, W., and Jo, C. (2011) Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol. 28, 9-13.
8 Sebranek, J. G., Jackson-Davis, A. L., Myers, K. L., and Lavieri, N. A. (2012) Beyond celery and starter culture: Advances in natural/organic curing processes in the united states. Meat Sci. 92, 267-273.   DOI
9 Thomas, D. and Vanderschuren, J. (1997) Modeling of NO x absorption into nitric acid solutions containing hydrogen peroxide. Ind. Eng. Chem. Res. 36, 3315-3322.   DOI
10 Sensening, R., Kalghatgi, S., Cerchar, E., Fridman, G., Shereshevsky, A., Torabi, B., Arjunan, K. P., Podolsky, E., Fridman, A., and Friedman, G. (2011) Nonthermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann. Biomed. Eng. 39, 674-687.   DOI
11 Yong, H. I., Kim, H. J., Park, S., Choe, W., Oh, M. H., and Jo, C. (2014) Evaluation of the treatment of both sides of raw chicken breasts with an atmospheric pressure plasma jet for the inactivation of Eschericia coli. Foodborne Pathog. Dis. 11, 652-657.   DOI
12 Yong, H. I., Lee, H., Park, S., Park, J., Choe, W., Jung, S., and Jo, C. (2017a) Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat's physicochemical properties. Meat Sci. 123, 151-156.   DOI
13 Yong, H. I., Park, J., Kim, H. J., Jung, S., Park, S., Lee, H. J., Choe, W., and Jo. C. (2017b) An innovative curing process with plasma-treated water for production of loin ham and for its quality and safery. Plasma Process. Polym. DOI:10.1002/ppap.201700050.   DOI
14 Yusupov, M., Bogaerts, A., Huygh, S., Snoeckx, R., van Duin, A. C. T., and Neyts, E. C. (2013) Plasma-induced destruction of bacterial cell wall components: A reactive molecular dynamics simulation. J. Phys. Chem. C. 117, 5993-5998.   DOI
15 Zhang, H. and Mittal, G. S. (2008) Effects of high-pressure processing (hpp) on bacterial spores: An overview. Food Rev. Int. 24, 330-351.   DOI
16 Kim, Y. I., Lee, E. J., Lee, N. H., Kim, Y. H., and Yamamoto, K. (2007) Effects of hydrostatic pressure treatment on the physicochemical, morphological, and textural properties of bovine semitendinosus muscle. Food Sci. Biotechnol. 16, 49-54.
17 Kim, H. J., Alahakoon, A. U., Jayasena, D. D., Khan, M. I., Nam, K. C., Jo, C., and Jung, S. (2015) Effects of electron beam irradiation and high-pressure treatment with citrus peel extract on the microbiological, chemical and sensory qualities of marinated chicken breast meat. Korean J. Poult. Sci. 42, 215-221.   DOI
18 Kim, H. J., Sung, N. Y., Yong, H. I., Kim, H., Lim, Y., Ko, K. H., Yun, C. H., and Jo, C. (2016) Mutagenicity and immune toxicity of emulsion-type sausage cured with plasma-treated water. Korean J. Food Sci. An. 36, 494-498.   DOI
19 Kim, H. J., Yong, H. I., Park, S., Choe, W., and Jo, C. (2013) Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr. Appl. Phys. 13, 1953-1953.   DOI
20 Kogelschatz, U. (2003) Dielectric-barrier discharges: Their history, discharge physics, and inducstrial applications. Plasma Chem. Plasma Process. 23, 1-46.   DOI
21 Kojtari, A., Ercan, U. K., Smith, J., Friedman, G., Sensening, R. B., Tyagi, S., Joshi, S. G., Ji, H. F., and Brooks, A. D. (2013) Chemistry for antimicrobial properties of water treated with non-equilibrium plasma. J. Nanomed. Bioterapeutic Discov. 4, 1000120.
22 Bauer, A., Ni, Y., Bauer, S., Paulsen, P., Modic, M., Walsh, J. L., and Smulders, F. J. M. (2017) The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Sci. 128, 77-87.   DOI
23 Kovacevic, V. V., Dojcinovic, B. P., Jovic, M., Roglic, G. M., Obradovic, B. M., and Kuraica, M. M. (2017) Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. J. Phys. D Appl. Phys. 50, 155205.   DOI
24 Ziuzina, D., Petil, S., Cullen, P. J., Keener, K. M., and Bourke, P. (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 42, 109-116.   DOI
25 Afshari, R. and Hosseini, H. (2014) Non-thermal plasma as a new food preservation method, its present and future prospect. J. Paramed Sci. 5, 116-120.
26 Ahn, D. U., Feng, X., Lee, E. J., Zhang, W., Lee, J. W., Jo, C., and Nam, K. C. (2016) Mechanisms of volatile production from non-sulfur amino acids by irradiation. Radiat. Phy. Chem. 119, 64-73.   DOI
27 Alahakoon, A. U., Jayasena, D. D., Ramachandra, S., and Jo, C. (2015) Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Tech. 45, 37-49.   DOI
28 Armenteros, M., Morcuende, D., Ventanas, J., and Estevez, M. (2016) The application of natural antioxidants via brine injection protects iberian cooked hams against lipid and protein oxidation. Meat Sci. 116, 253-259.   DOI
29 Awuah, G. B., Ramaswamy, H. S., and Economides, A. (2007) Thermal processing and quality: Principles and overview. Chem. Eng. Process. 46, 584-602.   DOI
30 Laroussi, M. and Leipold, F. (2004) Evaluation of the roles of reactive species, heat, and uv radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 233, 81-86.   DOI
31 Lee, H., Yong, H. I., Kim, H. J., Choe, W., Yoo, S. J., Jang, E. J., and Jo, C. (2016) Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci. Biotechnol. 25, 1189-1195.   DOI
32 Lee, H. J., Jung, H., Choe, W., Ham, J. S., Lee, J. H., and Jo, C. (2011) Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiol. 28, 1468-1471.   DOI
33 Lee, J., Jo, K., Lim, Y., Jeon, H. J., Choe, J. H., Jo, C., and Jung, S. (2018) The use of atmospheric pressure plasma as a curing process for canned ground ham. Food Chem. 240, 430-436.   DOI
34 Cheftel, J. C. (1995) Review: High-pressure, microbial inactivation and food preservation. Food Sci. Technol. Int. 1, 75-90.   DOI
35 Biesalski, H. K. (2005) Meat as a component of a healthy diet - Are there any risks or benefits if meat is avoided in the diet? Meat Sci. 70, 509-524.   DOI
36 Lukes, P., Dolezalova, E., Sisrova, I., and Clupek, M. (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of $H_2O_2$ and $HNO_2$. Plasma Sources Sci. T. 23, 015019.   DOI
37 Lund, M. N., Heinonen, M., Baron, C. P., and Estevez, M. (2011) Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 55, 83-95.   DOI
38 Mir, S. A., Shah, M. A., and Mir, M. M. (2016) Understanding the role of plasma technology in food industry. Food Bioprocess Technol. 9, 734-750   DOI
39 Misra, N. N. and Jo, C. (2017) Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 64, 74-86.   DOI
40 Bogaerts, A., Neyts, E., Gijbels, R., and van der Mullen, J. (2002) Gas discharge plasmas and their applications. Spectrochim. Acta B. 57, 609-658.   DOI
41 Chen, J. H., Ren, Y., Seow, J., Liu, T., Bang, W. S., and Yuk, H. G. (2011) Intervention techynologies for ensuring microbiological safety of meat: Current and future trends. Compr. Rev. Food Sci. Food Saf. 11, 119-132.
42 Conrads, H. and Schmidt, M. (2000) Plasma generation and plasma sources. Plasma Sources Sci. T. 9, 441-454.   DOI
43 Dobrynin, D., Fridman, G., Friedman, G., and Fridman, A. (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 11, 115020.   DOI
44 Cullen, P. J., Misra, N. N., Han, L., Bourke, P., Keener, K., O'Donnell, C., Moiseev, T., Mosnier, J. P., and Milosavljevic, V. (2014) Inducing a dielectric barrier discharge plasma within a package. IEEE Trans Plamsa Sci. 42, 2368-2369.   DOI
45 Deng, S. B., Ruan, R., Mok, C. K., Huang, G. W., Lin, X. Y., and Chen, P. (2007) Inactivation of Escherichia coli on almonds using nonthermal plasma. J. Food Sci. 72, M62-M66.   DOI
46 Dirks, B. P., Dobrynin, D., Fridman, G., Mukhin, Y., Fridman, A., and Quinlan, J. J. (2012) Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica. J. Food Protect. 75, 22-28.   DOI
47 Eliasson, B. and Kogelschatz, U. (1991) Modeling and applications of silent discharge plasmas. IEEE Trans Plamsa Sci. 19, 309-323.   DOI
48 Nehra, V., Kumar, A., and Dwivedi, H. K. (2008) Atmospheric non-thermal plasma sources. Int. J. Eng. 2, 53-68.
49 Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., and Cullen, P. J. (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 3, 159-170.   DOI
50 Napartovich, A. P. (2001) Overview of atmospheric pressure discharges producing nonthermal plasma. Plasmas Polym. 6, 53-68.
51 Noriega, E., Shama, G., Laca, A., Diaz, M., and Kong, M. G. (2011) Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol. 28, 1293-1300.   DOI
52 Rayson, M. S., Mackie, J. C., Kenndy, E. M., and Dlugogorshi, B. Z. (2012) Accurate rate constants for decomposition of aqueous nitrous acid. Inorg. Chem. 51, 2178-2185.   DOI
53 Oehmigen, K., Hahnel, M., Brandenburg, R., Wilke, C., Weltmann, K. D., and von Woedtke, T. (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 7, 250-257.   DOI
54 Ono, R. and Oda, T. (2003) Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy. J. Appl. Phys. 93, 5876-5882.   DOI
55 Parthasarathy, D. K. and Bryan, N. S. (2012) Sodium nitrite: The "cure" for nitric oxide insufficiency. Meat Sci. 92, 274-279.   DOI
56 Sakiyama, Y., Graves, D. B., Chang, H. W., Shimizu, T., and Morfill, G. E. (2012) Plasma chemistry model of sulface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D: Appl. Phys. 45, 425201.   DOI
57 Schluter, O., Ehlbeck, J., Hertel, C., Habermeyer, M., Roth, A., Engel, K. H., Holzhauser, T., Knorr, D., and Eisenbrand, G. (2013) Opinion on the use of plasma processes for treatment of foods. Mol. Nutr. Food Res. 57, 920-927.   DOI