• Title/Summary/Keyword: Split Beam

Search Result 148, Processing Time 0.028 seconds

Cone Beam Computed Tomography Analysis of Mandibular Anatomical Variation in a Patient with Facial Asymmetry (안면 비대칭 환자에서 Cone Beam Computed Tomography를 이용한 하악골 해부학적 변이의 분석)

  • Park, Seong-Won;Oh, Sung-Hwan;Lee, Jae-In
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • Purpose: The study was performed to compare patients with anatomical variations in facial asymmetry with patients in the normal range using cone-beam computed tomography (CBCT) and to take the preoperative condition into consideration in the case of a sagittal split ramus osteotomy (SSRO). Methods: The study was conducted on 46 adult patients composed of 2 subdivided groups, an asymmetry group (n=26) and a symmetry group (n=20). The asymmetry group was divided between patients with hemimandibular hyperplasia (HH, n=8) and hemimandibular elongation (HE, n=18). Using cross-sectional computed tomography images, the thickness of cancelleous bone in the buccal area of the mandible, thickness of buccal cortex in the buccal aspect of the mandible, thickness of cancellous bone in the inferior aspect of the mandible, thickness of buccal cortex in the inferior aspect of the mandible, and cross-sectional surface area of the mandible were measured. Results: In the asymmetry group, the cross-sectional area of the mandible including the inferior alveolar nerve positioned on the affected side was significantly different from the symmetry group. Thickness of cancelleous bone in the buccal aspect of the mandible, thickness of cancelleous bone in the inferior aspect of the mandible, and cross-sectional surface area of the mandible in the affected site of hemimandibular hyperplasia was significantly smaller than in the symmetry group. Conclusion: The inferior alveolar nerve runs lower and in a more buccal direction and shows a smaller cross-sectional surface of the mandible in the hemimandibular hyperplasia patients with asymmetry.

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

Topology Optimization of Beam Splitter for Multi-Beam Forming Based on the Phase Field Design Method (페이즈 필드 설계법 기반의 다중 빔 형성을 위한 빔 분배기 위상최적설계)

  • Kim, Han-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this paper, a systematic beam splitter design for multi-beam forming is proposed. The objective of this research is to a design beam splitter that splits and focuses scattering microwaves into intense beams in multiple directions. It is difficult to split multi-beam to non-specific directions with theoretical approaches. Therefore, instead of using transformation optics(TO), which is a widely used process for controlling electromagnetic wave propagation, we used a systematic design process called the phase field design method to obtain an optimal topological structure of beam splitter. The objective function is to maximize the norm of electric field of the target areas of each direction. To avoid island structure and obtain the structure in one body, volume constraint is added to the optimization problem by using augmented Lagrangian. Target frequency is set to X-band 10GHz. The optimal beam splitter performed well in multi-beam forming and the transported electric energy of target areas improved. A frequency dependency test was conducted in the X-band to determine effective frequency range.

Comparison of Residual Strain of Prestressed Concrete Beam Member by Different Analysis Method (해석법 차이에 의한 프리스트레스트 콘크리트 보부재의 잔류변형률 비교)

  • Lee, Duck Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.189-195
    • /
    • 2017
  • In the seismic design of building structural members, due to the complexity of the placement of PC steels in prestressed concrete members, it is necessary to review and define the definition of member damage in comparison with reinforced concrete members. In this study, the results of past experiments compared with the calculation results by 'section Analysis Method', with the aim of reviewing the precision of calculation results when member damage evaluation is performed using the section analysis method. Furthermore, it is also compared with the calculation results by the 'split Element Method'. In addition, parametric studies were carried out, and the influence of the difference between the amount of PC steels and reinforced bar on the residual strain was examined.

Size Selectivity of a Shrimp Beam Trawl for the Southern Rough Shrimp Trachysalambria curvirostris with the Extended SELECT Method (확장 SELECT 방법에 의한 새우조망의 꽃새우(Trachysalambria curvirostris) 망목 선택성)

  • Park, Chang-Doo;Park, Hae-Hoon;Kim, Jung-Nyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.390-396
    • /
    • 2011
  • Southern rough shrimp Trachysalambria curvirostris is exploited mainly by small shrimp beam trawl in coastal regions of Korea. To determine the size selectivity of a shrimp beam trawl for this species, a series of comparative fishing experiments was conducted in the sea adjacent to Geoje Island off the southern cost of Korea in June and November, 2010, using codends with four different mesh sizes(14.2, 17.8, 25.5, and 35.3 mm). The extended Share Each Length's Catch Total(SELECT) analysis method, based on a multinomial distribution, was applied to the fishing data to obtain a master selection curve. The model with the estimated split parameters fit the catch data best. The master selection curve was estimated to be: s(R)=exp(15.183R-7.872)/[1+exp(15.183R-7.872)], where the relative carapace length, R, is the ratio of carapace length to mesh size. The relative carapace length for 50% retention was 0.518, and the selection range was 0.145. The results suggest that codends with a larger mesh size allow more small-sized shrimps to escape.

Influence of sine material gradients on delamination in multilayered beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • The present paper deals with delamination fracture analyses of the multilayered functionally graded non-linear elastic Symmetric Split Beam (SSB) configurations. The material is functionally graded in both width and height directions in each layer. It is assumed that the material properties are distributed non-symmetrically with respect to the centroidal axes of the beam cross-section. Sine laws are used to describe the continuous variation of the material properties in the cross-sections of the layers. The delamination fracture is analyzed in terms of the strain energy release rate by considering the balance of the energy. A comparison with the J-integral is performed for verification. The solution derived is used for parametric analyses of the delamination fracture behavior of the multilayered functionally graded SSB in order to evaluate the effects of the sine gradients of the three material properties in the width and height directions of the layers and the location of the crack along the beam width on the strain energy release rate. The solution obtained is valid for two-dimensional functionally graded non-linear elastic SSB configurations which are made of an arbitrary number of lengthwise vertical layers. A delamination crack is located arbitrary between layers. Thus, the two crack arms have different widths. Besides, the layers have individual widths and material properties.

Beam Control Method of Multiple Array Antenna Using The Modified Genetic Algorithm (변형된 유전자 알고리즘을 이용한 Multiple Array 안테나의 빔 제어방식)

  • Hyun, Kyo-Hwan;Jung, Kyung-Kwon;Eom, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.39-45
    • /
    • 2007
  • This paper presents a novel scheme that quickly searches for the sweet spot of multiple array antennas, and locks on to it for high-speed millimeter wavelength transmissions, when communications to another antenna array are disconnected. The proposed method utilizes a modified genetic algorithm, which selects a superior initial group through preprocessing in order to solve the local solution in agenetic algorithm. TDD (Time Division Duplex) is utilized as the transfer method and data controller for the antenna. Once the initial communication is completed for the specific number of individuals, no longer antenna's data will be transmitted until each station processes GA in order to produce the next generation. After reproduction, individuals of the next generation become the data, and communication between each station is made again. Simulation results of 1:1, 1:2, 1:5 array antennas confirmed the efficiency of the proposed method. The 16bit split is 8bit, but it has similar performance as 16bit gene.

Space Charge in Polymers Irradiated by an E-Beam (전자빔이 조사된 고분자에서 공간전하)

  • Lee, Jung-Soo;Kim, Dong-Ook
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.231-232
    • /
    • 2008
  • The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chandler, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kpton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

어체 크기의 자동식별을 위한 split beam 음향 변환기의 개발

  • 이대재;신형일;이경훈;이원섭;강희영
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.63-64
    • /
    • 2001
  • 최근 세계 각국은 자국 이익에 우선하는 배타적 경제수역을 설정하고, EEZ경제수역에 대한 어업생물자원의 효율적 관리를 하기 위해 주요 어종별 TAC제도를 도입하고 있다. 이 제도의 시행과 관련하여 음향을 이용한 어업생물자원량의 정량적인 계측과 적정 크기 이상의 어체만을 선택하여 어획할 수 있는 어군탐지시스템의 개발 및 보급이 절실히 요구되고 있다. (중략)

  • PDF