• Title/Summary/Keyword: Spin-polarized

Search Result 92, Processing Time 0.036 seconds

Emission of Spin-polarized Light in Nitride-based Spin LEDs with Room-temperature Ferromagnetic (Ga,Mn)N Layer (상온 강자성 (Ga,Mn)N 박막을 이용한 질화물계 스핀 발광소자의 스핀편극된 빛의 발광)

  • Ham, Moon-Ho;Myoung, Jae-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1056-1060
    • /
    • 2005
  • We investigated the fabrication and characteristics of the nitride-based spin-polarized LEDs with room-temperature ferromagnetic (Ga,Mn)N layer as a spin injection source. The (Ga,Mn)N thin films having room-temperature ferromagnetic ordering were found to exhibit the negative MR and anomalous Hall resistance up to room temperature, revealing the existence of spin-polarized electrons in (Ga,Mn)N films at room temperature. The electrical characteristics in the spin LEDs did not degraded in spite of the insertion of the (Ga,Mn)N layer into the LED structure. In EL spectra of the spin LEDs, it is confirmed that the devices produce intense EL emission at 7 K as well as room temperature. These results are expected to open up new opportunities to realize room-temperature operating semiconductor spintronic devices.

Emission of spin-polarized light in GaN-based spin LEDs (GaN계 스핀 발광소자의 스핀편극된 빛의 발광)

  • Ham, Moon-Ho;Yoon, Suk-Ho;Park, Yong-Jo;Myoung, Jae-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.150-152
    • /
    • 2005
  • We investigated the fabrication and characteristics of spin-polarized LEDs based on GaN using (Ga,Mn)N as spin injection source. (Ga,Mn)N thin films were found to exhibit the ferromagnetic ordering above room temperature and the negative MR up to room temperature. The electrical characteristics in spin LEDs did not degraded in spite of the insertion of (Ga,Mn)N films. In EL spectra of spin LEDs, it is confirmed that spin LEDs emit the strong light at 7 K as well as room temperature. These results suggest that it is possible to emit spin-polarized light in our spin LEDs.

  • PDF

Spin Transport in a Ferromagnet/Semiconductor/Ferromagnet Structure: a Spin Transistor

  • Lee, W.Y;Bland, J.A.C
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.4-8
    • /
    • 2002
  • The magnetoresistance (MR) and the magnetization reversal of a lateral spin-injection device based on a spin-polarized field effect transistor (spin FET) have been investigated. The device consists of a two-dimensional electron gas (2DEG) system in an InAs single quantum well (SQW) and two ferromagnetic $(Ni_{80}Fe_{20})$ contacts: all injector (source) and a detector (drain). Spin-polarized electrons are injected from the first contact and, after propagating through the InAs SQW are collected by the second contact. By engineering the shape of the permalloy contacts, we were able to observe distinct switching fields $(H_c)$ from the injector and the collector by using scanning Kerr microscopy and MR measurements. Magneto-optic Kerr effect (MOKE) hysteresis loops demonstrate that there is a range of magnetic field (20~60 Oe), at room temperature, over which the magnetization in one contact is aligned antiparallel to that in the other. The MOKE results are consistent with the variation of the magnetoresistance in the spin-injection device.

Spin-polarization and x-ray magnetic circular dichroism in GaAs

  • Zohar, S.;Ryan, P.J.;Kim, J.W.;Keavney, D.J.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1182-1184
    • /
    • 2018
  • The combination of angular spin momentum with electronics is a promising successor to charge-based electronics. The conduction bands in GaAs may become spin-polarized via optical spin pumping, doping with magnetic ions, or induction of a moment with an external magnetic field. We investigated the spin populations in GaAs with x-ray magnetic circular dichroism for each of these three cases. We find strong anti-symmetric lineshapes at the Ga $L_3$ edge indicating conduction band spin splitting, with differences in line width and amplitude depending on the source of spin polarization.

AB INITIO CALCULATIONS OF STRONGLY CORRELATED ELECTRONS: ANTIFERROMAGNETIC GROUND STATE OF $UO_2$

  • YUN YOUNSUK;KIM HANCHUL;KIM HEEMOON;PARK KWANGHEON
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.293-298
    • /
    • 2005
  • We have performed the density functional theory calculations of $UO_2$ using the spin-polarized generalized gradient approximation (SP-GGA) and the SP-GGA+U approach. The SP-GGA+U approach correctly predicts the insulating electronic structure with antiferromagnetic ordering, but the SP-GGA calculations predict metallic behavior. The cohesive properties obtained from the SP-GGA+U calculations are in good agreement with the available experimental results and previous calculations. The spin-polarized local density of states shows that the antiferromagnetic ordering of $UO_2$ is governed by 5f orbitals of uranium ion. Our calculations demonstrate that the strong correlation of U 5f electrons should be taken into account for a reliable description of $UO_2$ physics.

Spin-Polarized Angle-Resolved Photoemission Spectroscopy Study of Magnetism (스핀편극 각도분해 광전자 분광학을 이용한 자성연구)

  • Kim, Hyeong-Do
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.228-233
    • /
    • 2012
  • Magnetic properties of a solid are determined by the quantum mechanical states of valence electrons. Spin-polarized angle-resolved photoemission spectroscopy (SP-ARPES) is a powerful tool to probe the electronic states in a solid and provides valuable information on magnetic properties of a solid. In this article, brief introduction to SP-ARPES and its applications are provided.

Production of Hyperpolarized 129Xe Using Spin Exchange Optical Pumping

  • Kavtanyuk, Vladimir Vladimirovich;Kim, Wooyoung;Ando, Yu;Chebotaryov, Sergey;Seon, Yonggeun;Tan, Joshua Artem
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1458-1465
    • /
    • 2018
  • We present a constructed setup for polarizing $^{129}Xe$ noble gas. Hyperpolarized $^{129}Xe$ has been obtained via spin exchange with an optically pumped rubidium vapor. Optical pumping is based on polarizing the valence electron of rubidium by the resonant absorption of a circularly polarized laser light. The magnetic field of 30 G was used for obtaining $^{129}Xe$ polarization. The apparatus for detecting polarization is a nuclear magnetic resonance spectrometer. The highest $^{129}Xe$ polarization of 54% has been obtained using 60 W circularly polarized laser light with wavelength of 794.7 nm. The measured longitudinal relaxation time of the hyperpolarized $^{129}Xe$ was 72.3 minutes.

Spin Signals in Lateral Spin Valves with Double Nonmagnetic Bottom Electrodes

  • Lee, B.C.
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.81-84
    • /
    • 2008
  • Spin injection and detection in lateral spin valves with double nonmagnetic bottom electrodes are investigated theoretically. Spin-polarized current injected from a magnetic electrode is split to two bottom electrodes, and nonlocal spin signals between the other magnetic electrode and the nonmagnetic electrodes are calculated from drift-diffusion equations. It is shown that the spin signal is approximately proportional to the associated current in the electrode.