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Spin injection and detection in lateral spin valves with double nonmagnetic bottom electrodes are investigated
theoretically. Spin-polarized current injected from a magnetic electrode is split to two bottom electrodes, and
nonlocal spin signals between the other magnetic electrode and the nonmagnetic electrodes are calculated from
drift-diffusion equations. It is shown that the spin signal is approximately proportional to the associated cur-
rent in the electrode.
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1. Introduction

Spintronics has been a focus of interest for more than a
decade [1]. Spin injection and detection are key elements
for the development of spintronic devices [2, 3]. Nonlocal
spin signal measurement provides a reliable method of
spin detection because it excludes spurious effects such as
anisotropic magnetoresistance [4-7]. A schematic sample
structure for nonlocal spin signal measurement is shown
in Figure 1(a). Two parallel ferromagnetic electrodes (FM1
and FM2) are grown on a nonmagnetic (NM) electrode in
a lateral spin valve. Spin-polarized current is injected
from the FM1 electrode and flows to the left side of the
NM electrode. Voltage is measured between the FM2
electrode and the right side of the NM electrode and is
denoted Vu, as shown in Figure 1(a). This voltage changes
depending on the relative orientation of the FM1 and
FM2 magnetizations, and the difference between parallel
and anti-parallel configurations is proportional to the spin
polarization of the injected current. For theoretical calcu-
lations, this nonlocal geometry is usually modeled by a
one-dimensional circuit as shown in Figure 1(b) and
solved with drift-diffusion equations [8-14]. This one-
dimensional model describes the main features of the
nonlocal spin signal fairly well, to some extent. Within
the one-dimensional circuit approximation, the spin signals
Vu and Vd shown in Figure 1(a) should be the same. The
one-dimensional circuit approximation is valid when the

width of the electrodes can be ignored. Recently, Ku et al.
experimentally investigated the effect of finite NM elec-
trode width w on the nonlocal spin signal [15]. They
fabricated a series of Py/Au/Py lateral spin valves with
different NM electrode widths, and observed the depen-
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Fig. 1. (a) Nonlocal measurements in a lateral spin valve. A
nonmagnetic electrode (NM) is at the bottom and two ferro-
magnetic electrodes (FM1 and FM2) are on the top. I is the
electrical current, and Vu and Vd are nonlocal voltage measure-
ments. w is the width of the bottom electrode and L is the dis-
tance between the two ferromagnetic electrodes. (b) One-
dimensional approximation of the lateral spin valve shown in
(a).
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dence of the spin signals on w. It was found that the spin
signals Vu and Vd are different, and that they show differ-
ent behaviors as functions of width w. As w increases, Vu

decreases rapidly at early stages and saturates to a small
value later. On the other hand, Vd is weaker than Vu and
eventually becomes zero. 

In this paper, a lateral spin valve with two nonmagnetic
bottom electrodes is investigated theoretically within a
one-dimensional circuit model, as shown in Figure 2. Top
electrodes 1 and 2 are ferromagnetic, and bottom elec-
trodes 3 and 4 are nonmagnetic. We assume that the total
current I, which flows from the top of magnetic electrode
1, splits at junction x = 0 and z = 0, and current I3 (I4)
flows to the nonmagnetic electrode 3 (4) (I = I3 + I4). The
nonlocal spin signal can be measured between ferromag-
netic electrode 2 and nonmagnetic electrode 3 or 4. The
current distribution in a finite NM electrode of real samples
would not be uniform. For an accurate description, two-
or three-dimensional sample structure needs to be taken
into account. The two one-dimensional nonmagnetic current
channels in our simple model (electrodes 3 and 4) might
depict the nonuniform current distribution in a finite NM
electrode. The distance between electrodes 3 and 4 is
taken as w.

This paper is organized as follows. In Section 2, the
drift-diffusion equations are applied to the lateral spin
valves with two nonmagnetic bottom electrodes, and a
detailed calculation is described. In Section 3, results are
presented with discussion. 

2. Theoretical Model

Drift-diffusion equations are adopted to describe spin-
dependent transport in the lateral spin valve with two

nonmagnetic bottom electrodes shown in Fig. 2. The
spin-dependent current density  and electrochemical
potential μσ are obtained from

,  (1)

,  (2)

.  (3)

Here, σ is the spin index (σ = + is for up-spin and σ = −
is for down-spin), ρσ is the spin-dependent resistivity, and
λ is the spin diffusion length. For simplicity, it is assumed
that the same ferromagnetic (nonmagnetic) materials are
used for electrodes 1 and 2 (3 and 4), and the junction
areas are the same. The resistivity and spin-diffusion length
in the magnetic (nonmagnetic) material are denoted as ρF

(ρN) and λF (λN), respectively. βF is the spin polarization
of the electrical current in bulk magnetic material, and γ
is the spin polarization for the tunneling of electrons at
the ferromagnetic and nonmagnetic interface. AJ is the
junction area, and AN is the cross-sectional area of the
nonmagnetic electrode.

The electrochemincal potential μ iσ in electrode i (i = 1,
2, 3, 4) can be expressed as 
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Fig. 2. One-dimensional schematic of a lateral spin valve with
double nonmagnetic electrodes. Electrodes 1 and 2 (3 and 4)
are ferromagnetic (nonmagnetic). I3 (I4) is the electric current
in the left side of the nonmagnetic electrode 3 (4), and I is the
total current (I=I3+I4). The distance between the two nonmag-
netic electrodes is taken as w.
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where βi is the bulk spin-polarization of electrode i (i=1, 2
and βi = ±βF depending on the magnetization direction),
rF = ρFλF/(1− ), and rN = ρNλN. Coefficients Bi, Ci, Di,
Ei, and Vi (i=1, 2, 3, 4) are determined from the boundary
conditions. The spin-dependent current density is easily
obtained from the electrochemical potential using Eq. (1).
For example, the spin-dependent current density J1± in
electrode 1 is

For the calculation, it is easier to use spin current Ji,s(x) ≡
Ji+(x) − Ji−(x) (i = 1, 2, 3, 4) and the difference of the
electrochemical potentials between up and down spins

 (i = 1, 2, 3, 4). Then, for electrode
1, we have

Similarly, for electrode 3, we have

Since μ1±(x) is continuous along the x-axis, so is Δμ1(x),
and then the relations −B1=C1−D1 and =
E1 are obtained. Similar relations are obtained for other
coefficients from continuity of Δμi(i=2, 3, 4). The other
relations are obtained from current conservation. Let us
consider the junction at x=0 and z=0 which involves
electrodes 1 and 3. Tunneling current (x=0, z=0) is
related to the electrochemical potentials as follows:

(z=0)− (x=0)=2e rI (x=0, z=0),

where γ1 is the spin polarization for tunneling current at
the junction x=0 and z=0 (γ1 = ±γ depending on the

magnetization directions of electrode 1), and rI = /(1−
γ 2) where  is the tunneling resistance per unit area at
the junction. The sign of (x=0, z=0) is positive when
the current flows from electrode 1 to electrode 3. From
current conservation at the junction, we have

 

where , and we obtain the relations

,

.

In a similar way, the other relations between coeffi-
cients are obtained from the remaining junctions. It can
be shown that voltage difference V23(24) between elec-
trodes 2 and 3 (4) are expressed as

,

,

where γ2 is the spin polarization for tunneling at the
junction between electrode 2 and nonmagnetic electrode 3
or 4. Finally, V23 and V24 are expressed with coefficients
as

,

.

The nonlocal spin signals are obtained after the coeffi-
cients are calculated from the linear simultaneous equations.

3. Results and Discussion

First, we briefly analyze the one-dimensional circuit
model with one bottom electrode shown in Fig. 1(b). The
nonlocal spin signal ΔRs for this system is given by
ΔRs=ΔV/I, where ΔV is the voltage difference between
parallel and anti-parallel magnetizations. The calculation
method is exactly same as that in Section 2, and the
nonlocal spin signal is

,

where , ,
and . This result is different from
that in [13] by the factor 1/2 associated with RF. This is
because the magnetic electrodes have both top and
bottom sides in our case, as shown in Fig. 1(b), whereas
the lower side has been ignored in [13]. The spin current
flows both up and down the sides of the ferromagnetic
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electrodes in our model, resulting in the factor 1/2, similar
to the factor 1/2 associated with RN. When  is
neglected, which is often a good approximation for real
samples, the nonlocal signal has a simple form such as

.

The nonlocal signals in the lateral spin valve with
double nonmagnetic electrodes as shown in Fig. 2 are
denoted as ΔR23=ΔV24/I and ΔR24=ΔV24/I. The exact ex-
pressions of ΔR23 and ΔR24 are complicated. Thus, we
provide only approximate results by assuming  and

 are very small. Then, the nonlocal spin signals are

,

.

The results are exactly the same as those of the one-
dimensional circuit model with one bottom electrode,
except for the factors I3/I and I4/I. In other words, the spin
signal is proportional to the associated electric current.
With this result, the experimental investigation in [15]
might be explained qualitatively. In the bottom electrode
with finite width w shown in Fig. 1(a), the electrical
current density on the left side would not be uniform. I3

and I4 in our model may be related to the current density
at the upper and lower part of the finite bottom electrodes,
respectively. The current density distribution will change
as a function of w. The current density distribution may
be calculated once the lateral spin valve is given, but we
provide a qualitative description here because our model
is already greatly simplified. We always expect that I3 is
larger than I4 because the resistance is higher for the
longer current path. When w is very small in the finite
NM electrode, the current density is large overall for the
fixed current I, and it is expected that the difference in
current density between the upper and lower parts of the
electrode is small because the current paths are almost the
same. Then, I3 and I4 are large, and both the nonlocal spin
signals ΔR23 and ΔR24 are strong. As w increases, the
current density in the finite NM electrode in Fig. 1(a) will
decrease rapidly overall due to the increase of the cross-

sectional area for fixed current I. The decrease in current
density will be more pronounced at the lower part
because the current path for the lower part increases
continuously, while the current path is fixed for the upper
part. As w increases further, the current density at the
upper side will saturate, while the current density at the
lower part goes to zero as the current path continuously
increases. Thus, the current density change as a function
of w explains qualitatively the main feature of the
experimental results in [15]. 
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