• 제목/요약/키워드: Spin diffusion length

검색결과 11건 처리시간 0.031초

Spin Valve Effect in Lateral Py/Au/Py Devices

  • Ku, Jang-Hae;Chang, Joon-Yeon;Koo, Hyun-Cheol;Eom, Jong-Hwa;Han, Suk-Hee;Kim, Gyu-Tae
    • Journal of Magnetics
    • /
    • 제12권4호
    • /
    • pp.152-155
    • /
    • 2007
  • Spin dependent transport was investigated in lateral $Py(Ni_{81}Fe_{19})/Au/Py$ spin valve devices. Clear spin valve effect was observed in conventional four-terminal measurement geometry. Higher resistance was found in antiparallel magnetization field of two Py electrodes which is determined by anisotropy magnetoresistance (AMR) measurements. The rectangular shape of spin signal together with good agreement of switching field convinces observed spin valve signal is resulted from effective spin injection and detection. The magnetoresistance ratio decays exponentially with channel length by which spin diffusion length of Au channel was estimated to be 76 nm.

Magneto-transport properties of CVD grown MoS2 lateral spin valves

  • 전병선;이상선;황찬용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.336-336
    • /
    • 2016
  • We have investigated magneto-transport properties in a MoS2 lateral spin-valve structures for different ferromagnetic CoFe electrode shapes and MoS2 channel lengths. For these devices, high quality and large-scale MoS2 thin films were synthesized through sulfurization of epitaxial MoO3 films and these sulfurized-MoO3 thin films properties are in good agreements with measurements on exfoliated MoS2 film. Magneto-transport measurements show a clear rectangular magnetoresistance signal of 0.16% and a spin polarization of 0.00012%. By using the one-dimensional spin diffusion equation, we extracted the spin diffusion length and coefficient, finding them to be 12 nm and $1.44{\times}10-3cm2/s$, respectively. These small values of magnetoresistance and spin polarization could be enhanced by appeasement of conductivity mismatch between the ferromagnet and semiconductor interface.

  • PDF

Fabrication of SOI FinFET Devices using Arsenic Solid-phase-diffusion

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.394-398
    • /
    • 2007
  • A simple doping method to fabricate a very thin channel body of the nano-scaled n-type fin field-effect-transistor (FinFET) by arsenic solid-Phase-diffusion (SPD) process is presented. Using the As-doped spin-on-glass films and the rapid thermal annealing for shallow junction, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. The n-type FinFET devices with a gate length of 20-100 nm were fabricated by As-SPD and revealed superior device scalability.

비소 고상확산방법을 이용한 MOSFET SOI FinFET 소자 제작 (Fabrication of SOI FinFET devices using Aresnic solid-phase-diffusion)

  • 조원주;구현모;이우현;구상모;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.133-134
    • /
    • 2006
  • A simple doping method to fabricate a very thin channel body of the n-type fin field-effect-transistor (FinFET) with a 20 nm gate length by solid-phase-diffusion (SPD) process is presented. Using As-doped spin-on-glass as a diffusion source of arsenic and the rapid thermal annealing, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. Single channel and multi-channel n-type FinFET devices with a gate length of 20-100 nm was fabricated by As-SPD and revealed superior device scalability.

  • PDF

Derivation of dc Voltages in a Magnetic Multilayer Undergoing Ferromagnetic Resonance

  • Oh, Dong-Keun;Lee, Cheol-Eui
    • Journal of Magnetics
    • /
    • 제10권3호
    • /
    • pp.77-79
    • /
    • 2005
  • In this work, we present a comprehensive and systematic approach for the derivation of the dc voltage generated by a magnetic multilayer undergoing ferromagnetic resonance, originally derived by Berger. Our alternative derivation applies especially in the limit of the spin diffusion length much longer than the carrier mean free path.

Single Crystalline CoFe/MgO Tunnel Contact on Nondegenerate Ge with a Proper Resistance-Area Product for Efficient Spin Injection and Detection

  • Jeon, Kun-Rok;Min, Byoung-Chul;Lee, Hun-Sung;Shin, Il-Jae;Park, Chang-Yup;Shin, Sung-Chul
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2010년도 임시총회 및 하계학술연구발표회
    • /
    • pp.96-96
    • /
    • 2010
  • We report the proper resistance-area products in the single crystalline bcc CoFe/MgO tunnel contact on nondegenerate n-Ge desirable for efficient spin injection and detection at room temperature. The electric properties of the crystalline CoFe(5 nm)/MgO(1.5,2.0,2.5 nm)/n-Ge(001) tunnel contacts have been investigated by I-V-T and C-V measurements. Interestingly, the tunnel contact with the 2-nm MgO exhibits the ohmic behavior with low resistance-area products, satisfying the theoretical conditions required for significant spin injection and detection. This result is ascribed to the presence of MgO layer between CoFe and n-Ge, enhancing the Schottky pinning parameter as well as shifting the charge neutrality level.

  • PDF

Dynamic Heterogeneity in Spin Facilitated Model of Supercooled Liquid: Crossover from Fragile to Strong Liquid Behavior

  • Choi, Seo Woo;Kim, Soree;Jung, YounJoon
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.183-195
    • /
    • 2014
  • Kinetically constrained models (KCM) have attracted interest as models that assign dynamic origins to the interesting dynamic properties of supercooled liquid. Signs of dynamic heterogeneity in the crossover model that linearly interpolates between the FA-like symmetric constraint and the East model constraint by asymmetric parameter b were investigated using Monte Carlo technique. When the asymmetry parameter was decreased sufficiently, smooth fragile-to-strong dynamic transition was observed in terms of the relaxation time, diffusion constant, Stokes-Einstein violation, and dynamic length scale. Competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism is behind such transition.

  • PDF

NMR Relaxation Study of Segmental Motions in Polymer-n-Alkanes

  • Chung Jeong Yong;Lee Jo Woong;Park Hyungsuk;Chang Taihyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권3호
    • /
    • pp.296-306
    • /
    • 1992
  • $^{13}C$ spin-lattice relaxation times were measured for n-alkanes of moderate chain length, ranging from n-octane to n-dodecane, under the condition of proton broad-band decoupling within the temperature range of 248-318 K in order to gain some insight into basic features of segmental motions occurring in long chain ploymeric molecules. The NOE data showed that except for methyl carbon-13 dipole-dipole interactions between $^{13}C$ and directly bonded $^1H$ provide the major relaxation pathway, and we have analyzed the observed $T_1data$ on the basis of the internal rotational diffusion theory by Wallach and the conformational jump theory by London and Avitabile. The results show that the internal rotational diffusion constants about C-C bonds in the alkane backbone are all within the range of $10^9\;-10^10\;sec^{-1}$ in magnitude while the mean lifetimes for rotational isomers are all of the order of $10^{-11}\;-10^{-10}$ sec. Analysis by the L-A theory predicts that activation energies for conformational interconversion between gauche and trans form gradually increase as we move from the chain end toward the central C-C bond and they are within the range of 2-4 kcal/mol for all the compounds investigated.

Characteristics of a Carbon Nanotube-based Tunnel Magnetoresistance Device

  • Kim, Jinhee;Woo, Byung-Chill;Kim, Jae-Ryoung;Park, Jong-Wan;So, Hye-Mi;Kim, Ju-Jin
    • Journal of Magnetics
    • /
    • 제7권3호
    • /
    • pp.98-100
    • /
    • 2002
  • Tunnel magnetoresistive devices using an individual multi-walled carbon nanotube were fabricated and their low-temperature electrical transport propertiers were investigated. With the ferromagnetic Co electrodes, the multi-walled carbon nanotube exhibited hysteretic magnetoresistance curve at low temperatures. Depending on the temperature and the bias current, the magnetoresistance ratio can be as high as 16% at the temperature of 2.2 K. Such high magnetoresistance ratio indicates a long diffusion length of the multi-walled carbon nanotube.