• Title/Summary/Keyword: Spin coupling

Search Result 225, Processing Time 0.03 seconds

Preparation and Characterization of Hard Coating Materials Based on Silane Modified Boehmite Hybrid Materials (Bohemite 나노졸을 이용한 내구성 코팅재료의 제조와 특성에 관한 연구)

  • Jeon, Seong Je;Kim, Woong;Lee, Jai Joon;Koo, Sang Man
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.580-585
    • /
    • 2006
  • UV-thermal dually curable coating materials were prepared by the sol-gel method. Nano-sized colloidal boehmite was treated with various organo silane coupling agents. These materials could be well dispersed in various alcohols and relatively polar organic solvents such as tetrahydrofuran and acetonitrile. The coating films were prepared by a spin coating method on various substrates, which were characterized by FT-IR, Si/Al CP MAS NMR spectra, UV-Vis spectrophotometer, FE-SEM, Taber abraser, haze meter, and pencil hardness tester. The effects of molar ratio and types of silane coupling agents, curing method and ion-shower treatment were investigated. Dually curable coating method offered an optimally good quality film in both hardness and transmittance. The transparency and the hardness of the prepared films were increased with amounts of 3-(trimethoxysilyl)propylmethacrylate, and (3-glycidyloxypropyl)trimethoxysilane, respectively. The adhesion between coated layer and substrate could be enhanced by ion-shower treatment.

A Study on the exchange anisotropy and the giant magnetoresistance of Mn-Ir/Ni-Fe/buffer/Si with various buffer layers (Mn-Ir/Ni-Fe/buffer/Si 다층박막에서 하지층에 따른 교환이방성 및 거대자기저항에 대한 연구)

  • 윤성용;노재철;전동민;박준혁;서수정;이확주
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.486-492
    • /
    • 1999
  • The purpose of this research was to find out what is the dominant factor determining the $H_{ex}$ and the $H_C$ of Mn-Ir/Ni-Fe multilayers with different buffer layers. Regardless of (111) texture of Mn-Ir layer, all samples showed over the $H_{ex}$ of 155 Oe. We found out the $H_{ex}$ and the $H_C$ of Mn-Ir/Ni-Fe multilayers depend on interface morphology and grain size of Mn-Ir layer at the interface between Mn-Ir and Ni-Fe layers. The dependence of magnetroesistance ratio and coupling field on the thickness of ferromagnetic layer, thickness of Cu layer and different buffer layers have been studied. Maximum magnetoresistance ratio appeared for the sample Ta(5 nm)/Mn-Ir(10 nm)/Ni-Fe(7.5 nm)/Cu(2 nm)/Ni-Fe(6 nm)/Ta(5 nm)/Si. Magnetoresistance ratio may be related to grain of ferromagnetic layer. Coupling field may be related to the roughness and the grain size of ferromagnetic layer in the spin-valve multilayers.

  • PDF

Dependence of Magnetoresistance on the Underlayer Thickness for Top-type Spin Valve (Top형 스핀밸브 구조의 Si 기판에서의 하지층 두께에 따른 자기저항 특성 연구)

  • Ko, Hoon;Kim, Sang-Yoon;Kim, Soo-In;Lee, Chang-Woo;Kim, Ji-Won;Jo, Soon-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.95-98
    • /
    • 2007
  • In this paper, the magnetic properties and the annealing behavior of spin valve structures with Mo(MoN) underlayers were studied for various underlayer thickness. The spin valve structure was Si substrate/Mo(MoN)$(t{\AA})/NiFe(21{\AA})/CoFe(28{\AA})/Cu(22{\AA})/CoFe(18{\AA})/IrMn(65{\AA})/Ta(25 {\AA})$. Mo and MoN films were deposited on Si substrates and their thermal annealing behavior was analyzed. The deposition rate of the MoN thin film was decreased and tile resistivity of the MoN thin films were increased as the $N_2$ gas flow was increased. The variations of MR ratio and magnetic exchange coupling field of spin valve structure were smaller with MoN underlayers than that with Mo underlayers up to thickness of $51{\AA}$. MR ratio of spin valves with Mo underlayers was 2.86% at room temperature and increased up to 2.91 % after annealing at $200^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased about 2.16%. The MR ratio of spin valves structure with MoN underlayers for $N_2$ gas flow 1 sccm was 5.27% at room temperature and increased up to 5.56% after annealing at $200^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased about 4.9%.

Annealing Cycle Dependence of MR Properties for Free Layer in $Ni_{25}Mn_{75}-Spin$ Valve Films ($Ni_{25}Mn_{75}-Spin$ Valve 박막 자유층의 열처리 순환수에 따른 자기저항 특성)

  • 이낭이;이주현;이가영;김미양;이장로;이상석;황도근
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.62-66
    • /
    • 2000
  • Annealing cycle number and nonmagnetic layer thickness dependences of interlayer coupling field ( $H_{inf}$ ) and coercivity ( $H_{cf}$ ) of free magnetic layer on NiMn alloy-spin valve films (SVF) were investigated. The SVF is Glass (7059)/N $i_{81}$F $e_{l9}$(70 $\AA$)/Co(10 $\AA$)/Cu(t $\AA$)/Co(15 $\AA$)N $i_{81}$$Fe_{19}$(35 $\AA$)/N $i_{25}$M $n_{75}$(250 $\AA$)Ta(50 $\AA$) films, it were fabricated using the dc sputtering method at different pinning layer thickness and nonmagnetic spacer thickness (Cu thickness; 30 $\AA$, 35 $\AA$, 40 $\AA$) of NiMn alloy with 25 at.%. Ni In case that Cu thickness of SVF is 35 $\AA$ and peak exchange coupling field ( $H_{ex}$) was 620 Oe, while coercivity $H_{c}$ = 280 Oe and MR ratio showed 2.5%. As for $H_{inf}$ and $H_{cf}$ , every SVF increased up to the stabilized values with the increase of annealing cycle number 15, which were $H_{inf}$ of 120 Oe and $H_{cf}$ of 75 Oe. The increase of $H_{cf}$ with the annealing cycle number seems to be caused by the effective reduction of Cu layer thickness due to the increase of interfacial mixing of Cu layer and Co layer. In addition, the $H_{inf}$ and $H_{cf}$ dependences of free NiFe layer by the interfacial mixing effect were appeared the different aspects when Cu layer becomes more thinner and thicker than Cu layer thickness of 35 $\AA$, respectively.ively....

  • PDF

Preparation of Hard Coating Films with High Refractive Index using Organic-Inorganic Hybrid Coating Solutions (유-무기 하이브리드 코팅 용액을 이용한 고굴절 하드코팅 막의 제조)

  • Choi, Jin Joo;Kim, Nam Uoo;Ahn, Chi Yong;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.388-394
    • /
    • 2014
  • Inorganic-organic hybrid coating solutions were synthesized using titania sol from titanium isopropoxide (TTIP) as an inorganic component and mixture of two or three types of silane coupling agents, such as methacryloxypropyl trimethoxysilane (MPTMS), aminopropyl triethoxysilane (APS), glycidoxypropyl trimethoxysilane (GPTMS) and vinyltriethoxysilane (VTES) as an organic component. The hard coating films were obtained by spin-coating on the polycarbonate sheets and curing the inorganic-organic hybrid coating solutions. The coating films made from the mixture of two types of silane coupling agents showed poor pencil hardness and adhesion, while those from the mixture of three types of silane coupling agents exhibited an improved pencil hardness of 2H~4H and adhesion of 5B. The refractive indexes of coating films were increased from 1.56 to 1.63 at 550 nm by increasing the content of titania sols from 20 to 30 g.

Microstructure and Exchange Coupling in Synthetic Ferrimagnetic Permalloy/ Ru (V)/Permalloy Films (루테늄과 바나듐을 중간층으로 삽입한 인위적페리층의 교환작용과 미세구조)

  • Jung, Young-Soon;Song, Oh-Sung;Yoon, Chong-Seung
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.211-215
    • /
    • 2003
  • We fabricated the synthetic ferrimagnetic layers (SyFL) of permalloy/X (X=Ru, V)/permalloy by varying the X thickness, and investigated the changes of coercivity (H$\sub$c/), spin flopping field (H$\sub$sf/), and saturation magnetization field (H$\sub$s/) with a superconducting quantum interference device (SQUID). We also observed the microstructure with a cross sectional transmission electron microscope (TEM). Permalloy SyFL had less than 10 Oe coercivity, and H$\sub$sf/ and H$\sub$s/ could be tuned by varying ruthenium and vanadium layer thickness. The comparatively small exchange coupling in permalloy-V SyFL was caused by the intermixing of permalloy and vanadium decreasing the effective exchange coupling thickness.

Magnetic Properties of Spin Valve Ta Underlayer Depending on N2 Concentration and Annealing Temperature (스핀 밸브 Ta 하지층의 질소함유량 변화와 열처리 온도에 따른 자기적 특성)

  • Choi, Yeon-Bong;Kim, Ji-Won;Jo, Soon-Chul;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.226-230
    • /
    • 2005
  • In this research, magnetic properties and annealing effects of the spin valve structures were investigated, which have Ta underlayer deposited with Ar and $N_2$ gas mixture. Also, TaN underlayer as a diffusion barrier and the substrate were investigated. The structure of the spin valve was Si($SiO_2$)/Ta(TaN)/NiFe/CoFe/Cu/CoFe/FeMn/Ta. Deposition rate was decreased and resistivity and roughness of the TaN films were increased as the $N_2$ gas flow was increased. The XRD results after high temperature annealing showed that Silicides were created in Si/Ta layer, but not in Si/TaN layer. Magnetoresistance ratio (MR) and exchange coupling field ($H_{ex}$) were decreased when the $N_2$ gas flow was increased over 4.0 sccm. The MR of the spin valves with Ta and TaN films deposited with up to 4.0 sccm of $N_2$ gas flow was increased about $0.5\%$ until the annealing temperature of up to $200^{\circ}C$ and then, decreased. TaN film deposited with 8.0 sccm of $N_2$ gas flow showed twice the adhesion of the Ta film. The above results indicate that with 3.0 sccm of $N_2$ gas flow during the Ta underlayer deposition, the magnetic properties of the spin valves are maintained, while the underlayer may be used as a diffusion barrier and the adhesion between the Si substrate and the underlayer is increased.

Magnetic Properties of Top-type Spin Valve Structure for Various Thickness of IrMn Antiferromagnet (Top형 스핀밸브구조에서 반강자성체 두께 변화에 따른 자기적 특성 연구)

  • Kim, Sang-Yoon;Ko, Hoon;Choi, Kyoung-Ho;Lee, Chang-Woo;Kim, Ji-Won;Jo, Soon-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.22-25
    • /
    • 2007
  • In this research, magnetic properties of spin valve structures using IrMn layers as antiferromagnetic were studied depending on the thickness of the pinned layer. The spin valve structure was Si substrate/$SiO_2(2,000\;{\AA})/Mo(17\;{\AA})NiFe(21\;{\AA})/CoFe(28\;{\AA})/Cu(22\;{\AA})/CoFe(18\;{\AA})/IrMn(t\;{\AA})/Ta(25\;{\AA})$. Also, Mo film was deposited on Si substrates and the thermal annealing effect was analyzed. The resistivity of the Mo film was increased as an annealing temperature was increased up to $600^{\circ}C$. The variations of MR ratio were related with magnetic exchange coupling field of the spin valve structures for various IrMn pinned layer thickness up to 130 ${\AA}$. MR ratio and $H_{ex}$ of spin valves was about 9.05% and 277.5 Oe when the thickness of the IrMn pinned layer was $32.5\;{\AA}(t=32.5\;{\AA})$. It was increased to 9.65% and 337.5 Oe for $t=65\;{\AA}$. For $t=97.5\;{\AA}$, the MR ratio and Hex decreased to 8.2% and 285 Oe, and further decrease was observed up to $t=130\;{\AA}$.

Magnetoresistance Properties of Spin Valves Using MoN Underlayer (MoN 하지층을 이용한 스핀밸브의 자기저항 특성)

  • Kim, Ji-Won;Jo, Soon-Chul;Kim, Sang-Yoon;Ko, Hoon;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.240-244
    • /
    • 2006
  • In this paper, magnetic properties and annealing behavior of spin valve structures using Mo(MoN) layers as underlayers were studied varying the thickness of the underlayers. The spin valve structure was consisted of Si substrate/$SiO_2(2,000{\AA})/Mo(MoN)(t{\AA})/NiFe(21\;{\AA})/CoFe(28\;{\AA})/Cu(22\;{\AA})/CoFe(18\;{\AA})/IrMn(65\;{\AA})/Ta(25\;{\AA})$. Also, MoN films were deposited on Si substrates and their thermal annealing behavior was analyzed. The resistivity of the MoN film increased as the $N_2$ gas flow rate was increased. After annealing at $600^{\circ}C$, XRD results did not show peaks of silicides. XPS results indicated MoN film deposited with 5 sccm of $N_2$ gas flow rate was more stable than the film deposited with 1 sccm of $N_2$ gas flow rate. The variations of MR ratio and magnetic exchange coupling fold were small for the spin valve structures using Mo(MoN) underlayers up to thickness of45 ${\AA}$. MR ratio of spin valves using MoN underlayers deposited with various $N_2$ gas flow rate was about 7.0% at RT and increased to about 7.5% after annealing at $220^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased to about 3.5%. Variation of $N_2$ gas flow rate up to 5 sccm did not change the MR ratio and $H_{ex}$ appreciably.

Magnetoelectric Effects in (Bi,La)FeO3-PbTiO3 Ceramics ((Bi,La)FeO3-PbTiO3 세라믹스의 자전효과)

  • Lee Eun Gu;Lee Jong Kook;Jang Woo Yang;Kim Sun Jae;Lee Jae Gab
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.121-125
    • /
    • 2005
  • Magnetoelectric (ME) effects for lanthanum modified $BiFeO_3-PbTiO_3\;(BE-_xPT)$ solid solutions have been investigated. The value of magnetoelectric polarization coefficient, up is 10 times greater than that of $Cr_2O_3$. The results also show that up is due to a linear coupling between polarization and magnetization, and that up is independent of do magnetic bias and ac magnetic field. The ME effect is believed to be significantly enhanced due to breaking of the cycloidal spin state of a long-period spiral spin structure, via randomly distributed charged imperfections.