• Title/Summary/Keyword: Spherical structure

Search Result 552, Processing Time 0.026 seconds

Formulation of a medium for the fruiting body development of Myxococcus stipitatus (Myxococcus stipitatus의 자실체 형성을 위한 배지 조성)

  • Hyun, Hyesook;Choi, Juo;An, Dongju;Cho, Kyungyun
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.117-122
    • /
    • 2019
  • Myxococcus stipitatus, a myxobacterium, forms spherical fruiting bodies with stems on edaphic substrates in enrichment cultures for isolation. However, an agar medium on which purely isolated strains of M. stipitatus form this type of fruiting bodies has not been known until now. In this study, since M. stipitatus DSM 14675 forms a hemispherical fruiting body-like structure on CYS agar medium, the effects of CYS medium components on fruiting body formation were investigated. Based on the results obtained, an agar medium on which M. stipitatus forms spherical fruiting bodies with stems was developed. Additionally, a liquid medium in which M. stipitatus grows in a dispersed manner was also formulated in this investigation.

Preparation and Characteristics of Core-Shell Structure with Nano Si/Graphite Nanosheets Hybrid Layers Coated on Spherical Natural Graphite as Anode Material for Lithium-ion Batteries

  • Kwon, Hae-Jun;Son, Jong-In;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.74-81
    • /
    • 2021
  • Silicon (Si) is recognized as a promising anode material for high-energy-density lithium-ion batteries. However, under a condition of electrode comparable to commercial graphite anodes with low binder content and a high electrode density, the practical use of Si is limited due to the huge volume change associated with Si-Li alloying/de-alloying. Here, we report a novel core-shell composite, having a reversible capacity of ~ 500 mAh g-1, by forming a shell composed of a mixture of nano-Si, graphite nanosheets and a pitch carbon on a spherical natural graphite particle. The electrochemical measurements are performed using electrodes with 2 wt % styrene butadiene rubber (SBR) and 2 wt.% carboxymethyl cellulose (CMC) binder in an electrode density of ~ 1.6 g cm-3. The core-shell composites having the reversible capacity of 478 mAh g-1 shows the outstanding capacity retention of 99% after 100 cycles with the initial coulombic efficiency of 90%. The heterostructure of core-shell composites appears to be very effective in buffering the volume change of Si during cycling.

Synthesis of Li-rich Cathode Material with Spherical Shape and High Crystallinity by Using Flame Spray Pyrolysis (화염분무열분해법을 이용한 구형의 고결정성 리튬 과잉 양극재 제조)

  • Sung Nam Lim
    • New & Renewable Energy
    • /
    • v.20 no.3
    • /
    • pp.20-27
    • /
    • 2024
  • A Li-rich cathode material, Li1.167Mn0.548Ni0.18Co0.105O2, with a spherical shape and high crystallinity, is prepared using flame spray pyrolysis. The post-heat treatment condition influences the properties of the prepared material, such as its structure, morphology, and chemical composition, and optimum performance is achieved at 900℃. Various excess Li contents (0-12 wt.%) are introduced in the precursor solution to compensate for volatilized Li during synthesis, bringing it close to the target composition. Compensation for volatilized Li enhances the electrochemical performance, i.e., the Li-compensated sample shows a good discharge capacity of 247 mAh g-1 at a current density of 20 mA g-1 in a potential window of 4.6-2.5 V. In addition, the prepared Li-rich cathode material supplemented with 9 wt.% of the Li source shows increased discharge capacity of 175 and 148 mAh g-1 at 200 and 400 mA g-1, respectively, compared with those of a bare sample (164 and 127 mAh g-1, respectively).

The Effects of Homogenization, Hot-Forging, and Annealing Condition on Microstructure and Hardness of a Modified STD61 Hot-Work Tool Steel (균질화, 열간단조, 어닐링 조건이 개량된 STD61 열간 금형강의 미세조직과 경도에 미치는 영향)

  • Park, Gyujin;Kang, Min-Woo;Jung, Jae-Gil;Lee, Young-Kook;Kim, Byung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.2
    • /
    • pp.72-79
    • /
    • 2013
  • The effects of homogenization, hot-forging, and annealing condition on microstructure and hardness of a modified STD61 hot-work tool steel were investigated. The ingot specimen had a dendritic structure consisting of bainite and martensite. Spherical VC particles of approximately 50 nm and cuboidal (V,Ti)C particles of about 100 nm were observed in the ingot specimen. After homogenization, the dendritic structure was blurred, and the difference in hardness between martensite and bainite became narrow, resulting in the more homogeneous microstructure. Needle-shaped non-equilibrium $(Fe,Cr)_3C$ particles were additionally observed in the homogenized specimen. The hot-forged specimen had bainite single phase with spherical VC, cuboidal (V,Ti)C, and needle-shaped $(Fe,Cr)_3C$ particles. After annealing at $860^{\circ}C$, the microstructures of specimens were ferrite single phase with various carbides such as VC, $(Fe,Cr)_7C_3$, and $(Fe,Cr)_{23}C_6$ because of relatively slow cooling rates. The size of carbides in annealed specimens decreased with increasing cooling rate, resulting in the increase of hardness.

Physicochemical Characterization of Powder Byproducts Generated from a Metallization Process and Its 1st Scrubber in the Semiconductor Industry (반도체 메탈공정 및 1차 스크러버에서 생성되는 파우더 부산물의 물리화학적 특성분석)

  • Choi, Kwang-Min;Jung, Myung-Koo;An, Hee-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.294-300
    • /
    • 2015
  • Objectives: The aim of this study is to identify physicochemical properties such as chemical composition, size, shape and crystal structure of powder byproducts generated from a metallization process and its 1st scrubber in the semiconductor industry. Methods: Powder samples were collected from inner chambers during maintenance of the W-plug process equipment (using tungsten hexafluoride as a precursor material) and its 1st scrubber. The chemical composition, size and shape of the powder particles were determined by field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy dispersive spectroscope (EDS). The crystal structure of the powders was analyzed by X-ray diffraction (XRD). Results: From the SEM-EDS and TEM-EDS analyses, O and W were mainly detected, which indicates the powder byproducts are tungsten trioxide ($WO_3$), whereas Al, F and Ti were detected as low peaks. The powder particles were spherical and nearly spherical, and the particle size collected from the process equipment and its 1st scrubber showed 10-20 nm (agglomerates: 55-90 nm) and 16-20 nm (agglomerates: 80-120 nm) as primary particles, respectively. The XRD patterns of the yellow powder byproducts exhibit five peaks at $23.8^{\circ}$ $33.9^{\circ}$ $41.74^{\circ}$ $48.86^{\circ}$ and $54.78^{\circ}$ which correspond to the (200), (220), (222), (400), and (420) planes of cubic $WO_3$. Conclusions: We elucidated the physicochemical characteristics of the powder byproducts collected from W-plug process equipment and its 1st scrubber. This study should provide useful information for the development of alternative strategies to improve the working environment and workers' health.

Fabrication of Porous W by Heat Treatment of Pore Forming Agent of PMMA and WO3 Powder Compacts (기공형성제 PMMA와 WO3 분말 성형체의 열처리를 이용한 W 다공체 제조)

  • Jeon, Ki Cheol;Kim, Young Do;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.129-133
    • /
    • 2015
  • Porous W with controlled pore structure was fabricated by thermal decomposition and hydrogen reduction process of PMMA beads and $WO_3$ powder compacts. The PMMA sizes of 8 and $50{\mu}m$ were used as pore forming agent for fabricating the porous W. The $WO_3$ powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at $1200^{\circ}C$ in hydrogen atmosphere. TGA analysis revealed that the PMMA was decomposed at about $400^{\circ}C$ and $WO_3$ was reduced to metallic W at $800^{\circ}C$. Large pores in the sintered specimens were formed by thermal decomposition of spherical PMMA, and their size was increased with increase in PMMA size and the amount of PMMA addition. Also the pore shape was changed from spherical to irregular form with increasing PMMA contents due to the agglomeration of PMMA in the powder mixing process.

Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation

  • Rathika, R.;Kovendhan, M.;Joseph, D. Paul;Pachaiappan, Rekha;Kumar, A. Sendil;Vijayarangamuthu, K.;Venkateswaran, C.;Asokan, K.;Jeyakumar, S. Johnson
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2585-2593
    • /
    • 2020
  • Swift heavy ion (SHI) beam irradiation can generate desirable defects in materials by transferring sufficient energy to the lattice that favours huge possibilities in tailoring of materials. The effect of Ag15+ ion irradiation with energy 200 MeV on spray deposited V2O5 thin films of thickness 253 nm is studied at various ion doses from 5 × 1011 to 1 × 1013 ions/㎠. The XRD results of pristine film confirmed orthorhombic structure of V2O5 and its average crystallite size was found to be 20 nm. The peak at 394 cm-1 in Raman spectra confirmed O-V-O bonding of V2O5, whereas 917 cm-1 arise because of distortion in stoichiometry by a loss of oxygen atoms. Raman peaks vanished completely above the ion fluence of 5 × 1012 ions/㎠. Optical studies by UV-Vis spectroscopy shows decrement in transmittance with an increase in ion fluence up to 5 × 1012 ions/㎠. The red shift is observed both in the direct and indirect band gaps until 5 × 1012 ions/㎠. The surface topography of the pristine film revealed sheath like structure with randomly distributed spherical nano-particles. The roughness of film decreased and the density of spherical nanoparticles increased upon irradiation. Irradiation improved the conductivity significantly for fluence 5 × 1011 ions/㎠ due to band gap reduction and grain growth.

Microstructure Control and Upconversion Emission Improvement of Y2O3:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Bae, Chaehwan;Jung, Kyeong Youl
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.450-457
    • /
    • 2021
  • Upconversion (UC) properties of Y2O3:Ho3+/Yb3+ spherical particles synthesized by spray pyrolysis were investigated by changing the dopant concentration and calcination temperature. Citric acid (CA), ethylene glycol (EG) and N, N-dimethylformamide (DMF) were used to control the microstructure of Y2O3:Ho3+/Yb3+ particles. In terms of achieving the highest UC green emission intensity, the optimal concentrations of Ho3+ and Yb3+ were found to be 0.3% and 3.0%, respectively. In addition, the UC intensity of Y2O3:Ho3+/Yb3+ showed a linear relationship with the crystallite size. The use of organic additives allows Y2O3:Ho3+/Yb3+ particles to have a spherical and dense structure, resulting in significantly reducing the surface area while maintaining high crystallinity. As a result, the UC emission intensity of Y2O3:Ho3+/Yb3+ particles having a dense structure showed the UC emission intensity about 3.8 times higher than that of hollow particles prepared without organic additives. From those results, when Y2O3:Ho3+/Yb3+ particles are prepared by the spray pyrolysis process, the use of the CA/EG/DMF mixtures as organic additives has been suggested as an effective way to substantially increase the UC emission intensity.

Effect of Complex with Metal Ions of G4-48PyA Dendrimer Thin Films (G4-48PyA 덴드리머 박막의 금속이온 착체 효과)

  • Jung, S.B.;Yoo, S.Y.;Park, E.;Kim, C.;Park, J.C.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.131-133
    • /
    • 2001
  • Dendrimers represent a new class of synthetic macromolecules characterized by a regularly branched treelike structure. Peculiar features of the dendritic geometry are the large number of end groups as well as the shape persistence in higher generations, approaching spherical geometry. And one of the most peculiar characteristics of dendritic macromolecules is their controlled molecular structure and orientation, which means that they have a practical application in achieving a highly organized molecular arrangement. We attempted to fabricate a G4-48PyA dendrimer LB films containing 48 pyridinealdoxime functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. And we have studied the electrical properties of the ultra-thin dendrimer LB films. The electrical properties of the ultra-thin dendrimer LB films were investigated by studying the current-voltage characteristics of metal/dendrimer LB films/metal (MIM) structure. And rectifying behavior of the devices was occurred in applied field.

  • PDF

Porous Nickel-Tin Nano-Dendritic Electrode for Rechargeable Lithium Battery (리튬 이차 전지를 위한 다공성 니켈-주석 나노 수지상 전극)

  • Jung, Hye-Ran;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.592-599
    • /
    • 2010
  • A porous nickel-tin nano-dendritic electrode, for use as the anode in a rechargeable lithium battery, has been prepared by using an electrochemical deposition process. The adjustment of the complexing agent content in the deposition bath enabled the nickel-tin alloys to have specific stoichiometries while the amount of acid, as a dynamic template for micro-porous structure, was limited to a certain amount to prevent its undesirable side reaction with the complexing agent. The ratios of nickel to tin in the electro-deposits were nearly identical to the ratios of nickel ion to tin ion in the deposition bath; the particle changed from spherical to dendritic shape according to the tin content in the deposits. The nickel to tin ratio and the dendritic structure were quite uniform throughout the thickness of the deposits. The resulting nickel-tin alloy was reversibly lithiated and delithiated as an anode in rechargeable lithium battery. Furthermore, the resulting anode showed much more stable cycling performance up to 50 cycles, as compared to that resulting from dense electro-deposit with the same atomic composition and from tin electrodeposit with a similar porous structure. From the results, it is expected that highly-porous nickel-tin alloys presented in this work could provide a promising option for the high performance anode materials for rechargeable lithium batteries.