DOI QR코드

DOI QR Code

기공형성제 PMMA와 WO3 분말 성형체의 열처리를 이용한 W 다공체 제조

Fabrication of Porous W by Heat Treatment of Pore Forming Agent of PMMA and WO3 Powder Compacts

  • 전기철 (서울과학기술대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학부) ;
  • 석명진 (강원대학교 재료금속공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Jeon, Ki Cheol (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Young Do (Division of Materials Science and Engineering, Hanyang University) ;
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2015.04.14
  • 심사 : 2015.04.22
  • 발행 : 2015.04.28

초록

Porous W with controlled pore structure was fabricated by thermal decomposition and hydrogen reduction process of PMMA beads and $WO_3$ powder compacts. The PMMA sizes of 8 and $50{\mu}m$ were used as pore forming agent for fabricating the porous W. The $WO_3$ powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at $1200^{\circ}C$ in hydrogen atmosphere. TGA analysis revealed that the PMMA was decomposed at about $400^{\circ}C$ and $WO_3$ was reduced to metallic W at $800^{\circ}C$. Large pores in the sintered specimens were formed by thermal decomposition of spherical PMMA, and their size was increased with increase in PMMA size and the amount of PMMA addition. Also the pore shape was changed from spherical to irregular form with increasing PMMA contents due to the agglomeration of PMMA in the powder mixing process.

키워드

참고문헌

  1. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  2. M. J. Suk and Y. S. Kwon: J. Korean Powder Metall. Inst., 8 (2001) 215 (Korean).
  3. H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091. https://doi.org/10.1016/j.pmatsci.2006.09.001
  4. D. H. Yang, B. Y. Hur and S. R. Yang: J. Alloys Comp., 461 (208) 221. https://doi.org/10.1016/j.jallcom.2007.07.098
  5. T. Ohji and M. Fukushima: Intern. Mater. Rev., 57 (2012) 115. https://doi.org/10.1179/1743280411Y.0000000006
  6. S. T. Oh, K. Tajima, M. Ando and T. Ohji: J. Am. Ceram. Soc., 83 (2000) 1314.
  7. I. H. Song, I.-M. Kwon, H. D. Kim and Y. W. Kim: J. Eur. Ceram. Soc., 30 (2010) 2671. https://doi.org/10.1016/j.jeurceramsoc.2010.04.027
  8. U. F. Vogt, M. Gorbar, P. Dimopoulos-Eggenschwiler, A. Broenstrup, G. Wagner and P. Colombo: J. Eur. Ceram. Soc., 30 (2010) 3005. https://doi.org/10.1016/j.jeurceramsoc.2010.06.003
  9. S. H. Chae, Y. W. Kim, I. H. Song, H. D. Kim and J. S. Bae: J. Korean Ceram. Soc., 46 (2009) 35 (Korean). https://doi.org/10.4191/KCERS.2009.46.1.035
  10. N. H. Kim, H. Song, S. C. Choi and Y. H. Choa: J. Korean Powder Metall. Inst., 16 (2009) 262 (Korean). https://doi.org/10.4150/KPMI.2009.16.4.262
  11. Y. P. Zhang, B. Yuan, M. Q. Zeng, C. Y. Chung and X. P. Zhang: J. Mater. Proc. Techn., 192-193 (2007) 439. https://doi.org/10.1016/j.jmatprotec.2007.04.069
  12. T. R. Wilken, W. R. Morcom, C. A. Wert and J. B. Woodhouse: Metall. Trans., 7B (1976) 589.
  13. P. Colombo, E. Bernardo and L. Biasetto: J. Am. Ceram. Soc., 87 (2004) 152. https://doi.org/10.1111/j.1551-2916.2004.00152.x
  14. W. D. Schubert and E. Lassner: Int. J. Refract. Met. Hard Mater., 10 (1991) 171. https://doi.org/10.1016/0263-4368(91)90031-I
  15. D. G. Kim, S. T. Oh, H. Jeon, C. H. Lee and Y. D. Kim: J. Alloys Compd., 354 (2003) 239. https://doi.org/10.1016/S0925-8388(03)00007-0