• Title/Summary/Keyword: Spherical mechanism

Search Result 143, Processing Time 0.027 seconds

Dynamic ice force estimation on a conical structure by discrete element method

  • Jang, HaKun;Kim, MooHyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.136-146
    • /
    • 2021
  • This paper aims to numerically estimate the dynamic ice load on a conical structure. The Discrete Element Method (DEM) is employed to model the level ice as the assembly of numerous spherical particles. To mimic the realistic fracture mechanism of ice, the parallel bonding method is introduced. Cases with four different ice drifting velocities are considered in time domain. For validation, the statistics of time-varying ice forces and their frequencies obtained by numerical simulations are extensively compared against the physical model-test results. Ice properties are directly adopted from the targeted experimental test set up. The additional parameters for DEM simulations are systematically determined by a numerical three-point bending test. The findings reveal that the numerical simulation estimates the dynamic ice force in a reasonably acceptable range and its results agree well with experimental data.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Study on the Defect Mechanism of Immersion Gold Layer (Immersion gold층의 결함 메카니즘 연구)

  • Lee, Dong-Jun;Choi, Jin-Won;Cho, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.3
    • /
    • pp.35-40
    • /
    • 2008
  • Investigation on immersion gold layers was carried out using TEM analysis for the purpose of understanding the defect of immersion gold layer. The immersion gold layers prepared with three different types of baths were observed. The results showed that the defect structure of immersion gold layer is strongly dependent on the types of gold baths. Spherical defects of average 10 nm size were located along the grain boundaries for the specimen formed at KAu$(CN)_2$ bath containing no reducing agent. In the case of the specimen processed at KAu$(CN)_2$ bath containing a reducing agent, the spherical defects of 5-10 nm size were distributed randomly in grains as well as at grain boundaries. However, such defects disappeared almost completely when $Na_{3}Au(SO_3)_2$ bath was used to fabricate an immersion gold.

  • PDF

Study on Hindered Diffusion of Single Polyelectrolyte Chain in Micro-Pores by Employing Brownian Dynamics Simulations (브라운 동력학 시뮬레이션에 의한 미세기공에서 단일한 다가전해질 사슬의 제한확산 연구)

  • 전명석;곽현욱
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.207-215
    • /
    • 2002
  • The hindered diffusion in confined spaces is an important phenomenon to understand in a micro-scale the filtration mechanism determined by the particle motion in membrane pores. Compared to the case of spherical colloids, both the theoretical investigations and the experiments on the hindered diffusion of polyelectrolytes is actually more difficult, due to lots of relevant parameters resulting from the complicated conformational properties of the polyelectrolyte chain. We have successfully performed the Brownian dynamics simulations upon a single polyeiectrolyte confined in a slit-like pore, where a coarse-grained bead-spring model incorporated with Debye-Huckel interaction is properly adopted. For the given sizes of both the polyelectrolyte and the pore width, the hindered diffusion coefficient decreases as the solution ionic concentration decreases. It is evident that a charge effect of the pore wall enhances the hindered diffusion of polyelectrolyte. Simulation results allow us to make sense of the diffusive transport through the micro-pore, which is restricted by the influences of the steric hindrance of polyelectrolytes as well as the electrostatic repulsion between the polyelectrolytes and pore wall.

Effects of Powder Morphology and Powder Preheating on the Properties and Deposition Behavior of Titanium Coating Layer Manufactured by Cold Spraying (저온 분사 티타늄 코팅층의 특성 및 적층 거동에 미치는 분말 형상과 분말 예열의 영향)

  • Hwang, Jae-Nam;Lee, Myeong-Ju;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.348-355
    • /
    • 2012
  • Cold spray deposition using Titanium powder was carried out to investigate the effects of powder morphology and powder preheating on the coating properties such as porosity and hardness. The in-flight particle velocity of Ti powder in cold spray process was directly measured using the PIV (particle image velocimetry) equipment. Two types of powders (spherical and irregular ones) were used to manufacture cold sprayed coating layer. The results showed that the irregular morphology particle appeared higher in-flight particle velocity than that of the spherical one under the same process condition. The coating layer using irregular morphology powder represented lower porosity level and higher hardness. Two different preheating conditions (no preheating and preheating at $500^{\circ}C$) were used in the process of cold spraying. The porosity decreased and the hardness increased by conducting preheating at $500^{\circ}C$. It was found that the coating properties using different preheating conditions were dependent not on the particle velocity but on the deformation temperature of particle. The deposition mechanism of particles in cold spray process was also discussed based on the experimental results of in flight-particle velocity.

Mechanism of Stress-dependent Structural Change of Yeast Prx (Yeast Prx의 스트레스의존 구조적 변화의 기작)

  • Kang, Ji-Seoun;Cheong, Gang-Won
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.16-23
    • /
    • 2005
  • Peroxiredoxins (Prxs) are a superfamily of thiol-specific antioxidant proteins present in all organism and involved in the hydroperoxide detoxification of the cell. To determine the structural organization of yeast-Prx, electron microscopic analysis was performed. The average images of yeast-Prxs revealed three different structure, i.e. spherical-shaped structure, ring-shaped structure and irregularly-shaped small particles. In order to analyze the conformational change of yeast-Prx by reduction and oxidation, Prxs were subjected to DTT and $H_2O_2$. In presence of DTT, yeast-Prx showed a high tendency to form a decamer. However, they changed into dimeric or spherical structure in the oxidized state. Here we also show ionic interaction between dimeric subunits is primarily responsible for yeast-Prx oligomerization.

Destruction of Giant Molecular Clouds by UV Radiation Feedback from Massive Stars

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve C.;Skinne, M. Aaron
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2018
  • Star formation in galaxies predominantly takes place in giant molecular clouds (GMCs). While it is widely believed that UV radiation feedback from young massive stars can destroy natal GMCs by exciting HII regions and driving their expansion, our understanding on how this actually occurs remains incomplete. To quantitatively assess the effect of UV radiation feedback on cloud disruption, we conduct a series of theoretical studies on the dynamics of HII regions and its role in controlling the star formation efficiency (SFE) and lifetime of GMCs in a wide range of star-forming environments. We first develop a semi-analytic model for the expansion of spherical dusty HII regions driven by the combination of gas and radiation pressures, finding that GMCs in normal disk galaxies are destroyed by gas-pressure driven expansion with SFE < 10%, while more dense and massive clouds with higher SFE are disrupted primarily by radiation pressure. Next, we turn to radiation hydrodynamic simulations of GMC dispersal to allow for self-consistent star formation as well as inhomogeneous density and velocity structures arising from supersonic turbulence. For this, we develop an efficient parallel algorithm for ray tracing method, which enables us to probe a range of cloud masses and sizes. Our parameter study shows that the net SFE, lifetime (measured in units of free-fall time), and the importance of radiation pressure (relative to photoionization) increase primarily with the initial surface density of the cloud. Unlike in the idealized spherical model, we find that the dominant mass loss mechanism is photoevaporation rather than dynamical ejection and that a significant fraction of radiation escapes through low optical-depth channels. We will discuss the astronomical.

  • PDF

Removal Characteristics of Heavy Metals in Acid Mine Drainage (AMD) Using Porous Starfish Ceramics (II) - Treatment of AMD in a Column Reactor System (불가사리 소재 다공성 세라믹을 이용한 산성광산배수 내 중금속의 제거특성(II) - 컬럼연속 실험을 통한 산성광산배수의 처리특성)

  • Lee, Yonghwan;Yim, Soobin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.25-34
    • /
    • 2014
  • The objective of this study was to investigate the removal characteristics and the elimination mechanism of heavy metals in Acid Mine Drainage (AMD) using spherical-type porous Zeolite-StarFish ceramics (porous ZSF ceramics) packed in a continuous column reactor system. The average removal efficiencies of heavy metals in AMD were Al 98.7, As 98.7, Cd 96.0, Cu 89.1, Fe 99.5, Mn 94.4, Pb 96.3 and Zn 80.8 % during 110 days of operation time. The average removal capacity of porous ZSF ceramics for heavy metals were measured to be Al 21.76, As 1.52, Cd 1.27, Cu 3.41, Fe 44.83, Mn 3.48, Pb 2.36 and Zn $3.76mg/kg{\cdot}day$. The analysis results of mechanism using SEM, EDS and XRD exhibited that the porous ZSF ceramics could act as a multi-functional ceramics for the removal of heavy metals in AMD through the reactions of precipitation, adsorption and ion-exchange. The experimental results of column reactor system displayed that the porous ZSF ceramics would be a consistently efficient agent for the removal of heavy metals in AMD for a long term.

Crystallopraphic Growth Orientation of Polycrystalline HSG Silicon Film (반구형 다결정 실리콘 박막의 결정학적 성장방위)

  • Sin, Dong-Won;Park, Chan-Ro;Park, Chan-Gyeong;Kim, Jong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.750-758
    • /
    • 1994
  • The purpose of present study is to find out the formation mechanism of hemi-spherical grained(HSG) polysilicon film. Silicon film was deposited using LPCVD. Polycrystalline silicon film was deposited at $575^{\circ}C$ contained crystalline HSG in the amorphous matrix phase. The crystalline HSG can be categorized into two grains : lower grains and upper grains. Lower grains are located at interface between silicon dioxide and silicon film, and upper grains are located at surface. The growth orientations of HSG were identified as (311) or (111) directions for lower grains and perferentially (110) direction for upper grains. This difference of growth orientations seems to be caused by the difference of formation mechanisms. That is, lower grain is formed by soild phase crystallization, on the other hand, upper grain is formed by surface diffusion of silicon atoms. It was thus, proposed that the formation of practical HSG polysilicon film is mainly controlled by surface diffusion of silicon atoms.

  • PDF

A Study on Cementation Reaction Mechanism for Weathered Granite Soil and Microbial Mixtures (화강풍화토와 미생물 혼합물의 고결 반응 메카니즘)

  • Oh, Jongshin;Lee, Sungyeol;Kim, Jinyung;Kwon, Sungjin;Jung, Changsung;Lee, Jaesoo;Lee, Jeonghoon;Ko, Hwabin;Baek, Wonjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.103-110
    • /
    • 2019
  • The purpose of this study is to investigate the reaction mechanism of soil and bacteria solution by various mixing ratios. For this purpose, in order to understand the reaction mechanisms of microorganisms and weathered granite soil, the tests were carried out under various mixing ratios additives such as soil, bacteria solution, $Ca(OH)_2$ and fixture. The test results from this study are summarized as follows. Firstly, the reaction between the bacteria solution and fixture produced a precipitate called vaterite, a type of silicate and calcium carbonate. Secondly, as a result of SEM analysis, the resulting precipitates generated from the test results using the specimens with various mixing ratios except SW condition and the irregular spherical microscopic shapes were formed in the size of $150{\mu}m$ to $20{\mu}m$. In addition, it can be seen that the bacteria solution and the fixture reacted between the granules to form an adsorbent material layer on the surface, and the microorganisms had a biological solidifying effect when the pores are combined into hard particles. Finally, The XRD analysis of the sediment resulting from the reaction between the microorganism and the deposit control agent confirmed the presence of a type of calcium carbonate ($CaCO_3$) vaterite, which affects soil strength formation, as well as silicate($SiO_2$).