DOI QR코드

DOI QR Code

Removal Characteristics of Heavy Metals in Acid Mine Drainage (AMD) Using Porous Starfish Ceramics (II) - Treatment of AMD in a Column Reactor System

불가사리 소재 다공성 세라믹을 이용한 산성광산배수 내 중금속의 제거특성(II) - 컬럼연속 실험을 통한 산성광산배수의 처리특성

  • Lee, Yonghwan (Department of Civil & Environmental Engineering, Jeonnam Provincial College) ;
  • Yim, Soobin (Department of Environmental Engineering, Kyungsung University)
  • Received : 2014.07.22
  • Accepted : 2014.09.24
  • Published : 2014.12.01

Abstract

The objective of this study was to investigate the removal characteristics and the elimination mechanism of heavy metals in Acid Mine Drainage (AMD) using spherical-type porous Zeolite-StarFish ceramics (porous ZSF ceramics) packed in a continuous column reactor system. The average removal efficiencies of heavy metals in AMD were Al 98.7, As 98.7, Cd 96.0, Cu 89.1, Fe 99.5, Mn 94.4, Pb 96.3 and Zn 80.8 % during 110 days of operation time. The average removal capacity of porous ZSF ceramics for heavy metals were measured to be Al 21.76, As 1.52, Cd 1.27, Cu 3.41, Fe 44.83, Mn 3.48, Pb 2.36 and Zn $3.76mg/kg{\cdot}day$. The analysis results of mechanism using SEM, EDS and XRD exhibited that the porous ZSF ceramics could act as a multi-functional ceramics for the removal of heavy metals in AMD through the reactions of precipitation, adsorption and ion-exchange. The experimental results of column reactor system displayed that the porous ZSF ceramics would be a consistently efficient agent for the removal of heavy metals in AMD for a long term.

천연제올라이트와 제강전로슬래그를 목분과 함께 혼합 소성한 구형(Spherical type)의 다공성 ZSF 세라믹이 충진된 컬럼을 통해 산성광산배수의 처리 가능성을 파악하고 미세분석을 이용하여 산성광산배수 내 중금속의 제거기작을 연구하고자 하였다. 운전기간 110일(약 3.7개월) 동안 중금속의 평균 제거효율은 Al 98.7, As 98.7, Cd 96.0, Cu 89.1, Fe 99.5, Mn 94.4, Pb 96.3, Zn 80.8 %로서 높은 중금속 제거효율을 장기간 유지하는 것으로 나타났다. 컬럼연속 실험에서 다공성 ZSF 세라믹의 평균 중금속 제거능은 Al 21.76, As 1.52, Cd 1.27, Cu 3.41, Fe 44.83, Mn 3.48, Pb 2.36, Zn $3.76mg/kg{\cdot}day$로 파악되었다. SEM, EDS 및 XRD을 이용한 미세분석 결과 산성광산배수 내 중금속은 다공성 ZSF 세라믹에 의해 중화침전뿐만 아니라 흡착 및 이온교환 등 복합적인 기작에 의해 제거될 수 있다는 사실을 나타내고 있었다. 컬럼연속 실험을 통해 다공성 ZSF 세라믹은 산성광산배수 내 중금속을 장기간 안정적으로 제거할 수 있는 효과적인 처리제임을 확인할 수 있었다.

Keywords

References

  1. Cho, C. K. (2012), Heavy metal contamination and risk assessment of an abandoned metal mine, Soon Chunhyang University, pp. 32-40 (in Korean).
  2. Doshi, S. M. (2006), Bioremediation of acid mine drainage using sulfate-reducing bacteria. National Network for Environmental Management Studies, U.S. Environmental Protection Agency, Washington, D.C., pp. 104-118.
  3. Erdem, E., Karapinar, N. and Donat, R. (2004), The removal of heavy metal cations by natural zeolites. Journal of Colloids and Interface Science, Vol. 280, No. 2, pp. 309-314. https://doi.org/10.1016/j.jcis.2004.08.028
  4. Gusek, J. J. (2005), Selected case studies: applications of sulfatereducing bioreactors in the passive treatment of acid mine/rock drainage. Mine Water Treatment Technology Conference, Pittsburg, PA, August pp. 15-18.
  5. Ji, S. W., Ko, J. I., Kim, H, B., Kang, H. T., Kim, J. W. and Kim, S. J. (2003), Operation status of natural clarifier for the treatment of acid drainage from domestic abandoned mine, 2003 Spring Conference on Soil and Groundwater Environment, pp. 352-355 (in Korean).
  6. Ji, S. W. and Song, H. C. (2012), Evaluation and measures for acid drainage damage, Korean Society of Hazard Mitigation, Vol. 12, No. 2, pp. 26-32 (in Korean).
  7. Johnson, D. B. and Hallberg, K. B. (2005), Acid mine drainage remediation options : a review, Science of Total Environment, Vol. 338, No. 1-2, pp. 3-14. https://doi.org/10.1016/j.scitotenv.2004.09.002
  8. Kalin, M., Fyson, A. and Wheeler, W. N. (2006), The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage, Science of Total Environment. Vol. 366, No. 2-3, pp. 395-408. https://doi.org/10.1016/j.scitotenv.2005.11.015
  9. Ko, H. C., Song, H, S., Yoon, J. D. and Kwak, J. P. (2002), Production of calcium phosphate agent using wasted starfish, Research of Advanced Materials, Vol. 14, No. 1, pp. 71-76 (in Korean). https://doi.org/10.1002/1521-4095(20020104)14:1<71::AID-ADMA71>3.0.CO;2-W
  10. Kwon, H. H., Shim, Y. S., Lee, J. S., Kim, T. H., Kim, J. H., Yoon, S. H. and Nam, K. S. (2007), Cause and measures of mine damage, Journal of Mine Reclamation Technology, Vol. 1, No. 1, pp. 5-25.
  11. Oh, J. and Shim, Y. S. (2003), Statistical analysis of water quality of domestic Acid Mine Drainage (AMD), Vol. 23, No. 6B, pp. 587-596.
  12. Mine Reclamation Corporation (2006), A study of long-term prediction of work for mine damage mitigation, Journal of Mine Reclamation Technology, Vol. 1, No. 2, pp. 180-188.
  13. Park, H. S. (2011), Field application and maintenance of the passive treatment system depending on chemical characteristics of mine water, Jeonnam University, pp. 120-153 (in Korean).
  14. Park, H. Y. (2003), Development of industrialization technology with starfish, Food Industry and Nutrition, Vol. 8, No. 3, pp. 18-25.
  15. Skousen, J., Rose, A., Geidel, G., Foremna, J., Evans, R. and Hellier, W. (1998), Handbook of technologies for avoidance and remediation of acid mine drainage, The National Mine Land Reclamation Center, West Virginia University, Morgantown, WV, USA., pp. 94-132.
  16. Sprynskyy, M., Buszewski, B., Terzyk, A.P. and Namienik, J. (2006), Study of the selection mechanism of heavy metal ($Pb^{2+},\;Cu^{2+},\;Ni^{2+}\;and\;Cd^{2+}$) adsorption on clinoptilolite, Journal of Colloids and Interface Science, Vol. 304, No. 1, pp. 21-28. https://doi.org/10.1016/j.jcis.2006.07.068
  17. Yang, J. K., Yu, M. R. and Lee, S. M. (2006), Preparation of Fe(III)-coated starfish and evaluation of the removal capacity of copper, Journal of Korean Society on Water Quality, Vol. 22, No. 1, pp. 172-176 (in Korean).
  18. Wingenfelder, U., Hansen C., Furrer, G. and Schulin, R. (2005), Removal of heavy metals from mine waters by natural zeolites, Environmental Science and Technology, Vol. 39, No. 12, pp. 4606-4613. https://doi.org/10.1021/es048482s