• Title/Summary/Keyword: Spent nuclear fuels

Search Result 205, Processing Time 0.018 seconds

Construction of a Rotating Disk Electrode System for Measuring Electrochemical Parameters of a Metal Ion in LiCl-KCl Melt: Electrochemical Properties of Sm3+

  • Chan-Yong Jung;Hwakyeung Jeong;Na-Ri Lee;Jong-Yun Kim;Tae-Hong Park;Sang-Eun Bae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.3
    • /
    • pp.251-257
    • /
    • 2024
  • Pyrochemical processing and molten-salt reactors have recently garnered significant attention as they are promising options for future nuclear technologies, such as those for recycling spent nuclear fuels and the next generation of nuclear reactors. Both of these technologies require the use of high-temperature molten salt. To implement these technologies, one must understand the electrochemical behavior of fission products in molten salts, lanthanides, and actinides. In this study, a rotating-disk-electrode (RDE) measurement system for high-temperature molten salts is constructed and tested by investigating the electrochemical reactions of Sm3+ in LiCl-KCl melts. The results show that the reduction of Sm3+ presents the Levich behavior in LiCl-KCl melts. Using the RDE system, not only is the diffusion-layer thickness of Sm3+ measured in high-temperature molten salts but also various electrochemical parameters for Sm3+ in LiCl-KCl melts, including the diffusion coefficient, Tafel slope, and exchange current density, are determined.

A Foreign Cases Study of the Deep Borehole Disposal System for High-Level Radioactive Waste (고준위 방사성폐기물 심부시추공 처분시스템 개발 해외사례 분석)

  • Lee, Jongyoul;Kim, Geonyoung;Bae, Daeseok;Kim, Kyeongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • If the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3~5 km and more stable rock formation, it has several advantages. For example, (1)significant fluid flow through basement rock is prevented, in part, by low permeability, poorly connected transport pathways, and (2)overburden self-sealing. (3)Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose-critical radionuclides at the depth. Finally, (4) high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept to the deep geological disposal concept(DGD), very deep borehole disposal(DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, for the preliminary applicability analyses of the DBD system for the spent fuels or high level wastes, the DBD concepts which have been developed by some countries according to the rapid advance in the development of drilling technology were reviewed. To do this, the general concept of DBD system was checked and the study cases of foreign countries were described and analyzed. These results will be used as an input for the analyses of applicability for DBD in Korea.

A Study on Radiation Safety Evaluation for Spent Fuel Transportation Cask (사용후핵연료 운반용기 방사선적 안전성평가에 관한 연구)

  • Choi, Young-Hwan;Ko, Jae-Hun;Lee, Dong-Gyu;Jung, In-Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.375-387
    • /
    • 2019
  • In this study, the radiation dose rates for the design basis fuel of 360 assemblies CANDU spent nuclear fuel transportation cask were evaluated, by measuring radiation source terms for the design basis fuel of a pressurized heavy water reactor. Additionally, radiological safety evaluation was carried out and the validity of the results was determined by radiological technical standards. To select the design basis fuel, which was the radiation source term for the spent fuel transportation cask, the design basis fuels from two spent fuel storage facilities were stored in a spent fuel transportation cask operating in Wolsung NPP. The design basis fuel for each transportation and storage system was based on the burnup of spent fuel, minimum cooling period, and time of transportation to the intermediate storage facility. A burnup of 7,800 MWD/MTU and a minimum cooling period of 6 years were set as the design basis fuel. The radiation source terms of the design basis fuel were evaluated using the ORIGEN-ARP computer module of SCALE computer code. The radiation shielding of the cask was evaluated using the MCNP6 computer code. In addition, the evaluation of the radiation dose rate outside the transport cask required by the technical standard was classified into normal and accident conditions. Thus, the maximum radiation dose rates calculated at the surface of the cask and at a point 2 m from the surface of the cask under normal transportation conditions were respectively 0.330 mSv·h-1 and 0.065 mSv·h-1. The maximum radiation dose rate 1 m from the surface of the cask under accident conditions was calculated as 0.321 mSv·h-1. Thus, it was confirmed that the spent fuel cask of the large capacity heavy water reactor had secured the radiation safety.

Safety Assessment on Long-term Radiological Impact of the Improved KAERI Reference Disposal System (the KRS+)

  • Ju, Heejae;Kim, In-Young;Lee, Youn-Myoung;Kim, Jung-Woo;Hwang, Yongsoo;Choi, Heui-joo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.75-87
    • /
    • 2020
  • The Korea Atomic Energy Research Institute (KAERI) has developed geological repository systems for the disposal of high-level wastes and spent nuclear fuels (SNFs) in South Korea. The purpose of the most recently developed system, the improved KAERI Reference Disposal System Plus (KRS+), is to dispose of all SNFs in Korea with improved disposal area efficiency. In this paper, a system-level safety assessment model for the KRS+ is presented with long-term assessment results. A system-level model is used to evaluate the overall performance of the disposal system rather than simulating a single component. Because a repository site in Korea has yet to be selected, a conceptual model is used to describe the proposed disposal system. Some uncertain parameters are incorporated into the model for the future site selection process. These parameters include options for a fractured pathway in a geosphere, parameters for radionuclide migration, and repository design dimensions. Two types of SNF, PULS7 from a pressurized water reactor and Canada Deuterium Uranium from a heavy water reactor, were selected as a reference inventory considering the future cumulative stock of SNFs in Korea. The highest peak radiological dose to a representative public was estimated to be 8.19×10-4 mSv·yr-1, primarily from 129I. The proposed KRS+ design is expected to have a high safety margin that is on the order of two times lower than the dose limit criterion of 0.1 mSv·yr-1.

The Criticality Analysis of Spent Fuel Pool with Consolidated Fuel in KNU 9 & 10 (조밀화 집합체로 중간저장하는 경우 원자력 발전소 9, 10호기의 사용 후 핵연료 저장조의 임계분석)

  • Jae, Moo-Sung;Park, Goon-Cherl;Chung, Chang-Hyun;Jang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 1988
  • Since the lack of the spent fuel storage capcity has been expected for all Korean nuclear power plants in the mid-1990s, the maximum density rack (MDR) with consolidated fuels can be proposed to overcome the shortage of the storage capacity in KNU 9 & 10 which have most limited capacities. To ensure the safety when the alternatives are applied in the KNU 9 & 10, the multiplication factor are calculated with varying the rack pitch and the thickness of consolidated storage box by the AMPX-KENO IV codes. The computing system is verified by the benchmark calculation with criticality experiments for arrays of consolidated fuel modules, which was reported by B & W in 1981. Also an abnormal condition, i.e. malposition accident, is simulated. The results indicate that the KNU 9 & 10 storage pools with consolidated fuel are safe in the view of the criticality. Thus the storage capacity can be expanded from 9/3 cores into 27/3 cores even with considering equipments and cooling spaces.

  • PDF

Thermal Analysis of a Retrievable CANDU Spent Fuel Disposal Tunnel (회수 가능 CANDU 사용후핵연료 처분터널에 대한 열 해석)

  • Cha, Jeong-Hun;Lee, Jong-Youl;Choi, Heui-Joo;Cho, Dong-Keun;Kim, Sang-Nyung;Youn, Bum-Soo;Ji, Joon-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.119-128
    • /
    • 2008
  • Thermal assessment of a new CANDU spent fuel disposal system, which improves the retrievability of the spent fuel and enhances the densification factor compared with the Korean Reference disposal System, is carried out in this study. The canisters for CANDU spent fuels are stored for long term and cooled by natural convection in the proposed disposal system for the retrievability. The steady state thermal analyses for proposed CANDU disposal system are carried out with the ANSYS 10.0 CFX code. The thermal analyses are performed through two steps. At the first step, the sensitivity of the disposal tunnel spacing is analysed. The differences of maximum temperatures by several tunnel spacings are calculated at three points in the disposal tunnel. The result shows that the differences of the temperature at the three points are almost negligible because 99% of the decay heat is removed by natural convection. At the second procedure, 60m tunnel spacing with a ventilation system instead of natural convection is considered. The result is applied to the calculation of the canister surface temperature in disposal tunnel as boundary conditions. Consequently, the average and the maximum surface temperature of disposal canisters are $79.9^{\circ}C$ and $119^{\circ}C$, respectively. The inner maximum temperature of a basket in the disposal canister is calculated as $140.9^{\circ}C$. The maximum temperature of the basket meets the thermal requirement for the CANDU spent fuel cladding.

  • PDF

Full System Chemical Decontamination Concept for Kori Unit 1 Decommissioning (고리1호기 해체시 전계통 화학제염 운전개념)

  • Lee, Doo Ho;Kwon, Hyuk Chul;Kim, Deok Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.289-295
    • /
    • 2016
  • Kori Unit 1, the first PWR (Pressurized Water Reactor) plant in Korea, began its commercial operation in 1978 and will permanently shut down on June 18, 2017. After moving the spent fuels to SFP (Spent Fuel Pool) system, Kori Unit 1 will perform a full system chemical decontamination to reduce radiation levels inside the various plant systems. This paper will describe the operation concept of the full system chemical decontamination for Kori Unit 1 based on experiences overseas.

A Study on the Dissolution and Separation for the Quantitative Analysis of Iodide in Spent Nuclear Fuel (사용후핵연료중의 미량 요오드 정량을 위한 용해 및 분리 연구)

  • Choi, Ke Chon;Lee, Chang Heon;Song, Byang Chol;Park, Yang Soon;Jee, Kwang Yong;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.751-758
    • /
    • 2000
  • A study was carried out on the dissolution of spent PWR fuels and performed on the fuels and the separation of iodide for the quantitative analysis using SIMFUEL which has chemical composition of a simulated spent PWR fuel (burn-up; 35,000 MWd/MTU and cooling time; 10 years). To dissolve the SIMFUEL effectively and to minimize the formation of volatile iodine through dissolution process, the optimum ratio of mixed acid ($HNO_3/HCl$ 80: 20 mol%) was established and ozone gas was purged. In the separation step of iodine with $CCl_4$, $NH_2OH{\cdot}HCl$ was used for reducing ${IO_3}^-$ to $I_2$.The optimum acidity of the dissolved solution and the added of $NH_2OH{\cdot}HCl$ were 2.5 M and more than $1.5{\times}10^{-3}mole$, respectively. The recovery of iodide by ion chromatography was $82.8{\pm}4.1%$ and the total yield was corrected by gamma spectrometery using $^{131}I$ as a tracer.

  • PDF

Electrochemical Reduction Process for Pyroprocessing (파이로프로세싱을 위한 전해환원 공정기술 개발)

  • Choi, Eun-Young;Hong, Sun-Seok;Park, Wooshin;Im, Hun Suk;Oh, Seung-Chul;Won, Chan Yeon;Cha, Ju-Sun;Hur, Jin-Mok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-$Li_2O$ electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

Determination of Design Basis for a Storage System for Spent Fuel in Korea (국내 사용후핵연료 저장시스템의 설계기준 설정 인자 고찰)

  • Yoon, Jeong-Hyoun;Lee, Eun-Yong;Woo, Sang-In;Kim, Tae-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • Safe operation and maintenance of engineered dry storage systems for spent fuel from nuclear power plants basically depends on adequately adopted design requirements. The most important design target of the system are those which provide the necessary assurances that spent fuel can be received, handled, stored and retrieved without undue risk to health and safety of workers and the public. To achieve these objectives, the design of the system incorporates features to remove spent fuel residual heat, to provide for radiation protection, and to maintain containment over the lifespan of the system as specified in the design specifications. The features also provide for all possible anticipated operational occurrences and design basis events in accordance with the design basis as guided by the designated regulations. The general performance requirements of a projected storage system are introduced in this paper. The storage system is designed to store fuel assemblies in associated with designated regulatory requirements. Small increases/decreases in maximum burnup can be adjusted with cooling time. These variations are compensated for by a corresponding small site-specific increase/decrease in the design basis-cooling period, as long as the maximum heat load and radioactivity of loaded fuel assemblies are met. Generic design basis events considered for the storage system are summarized. Shielding and radiological requirements along with mechanical and structural are derived in this study.