• Title/Summary/Keyword: Speed breakdown

Search Result 149, Processing Time 0.026 seconds

Development of New Freeway Capacity Estimation Method (고속도로의 용량산정 방법론 개발에 관한 연구)

  • Kim, Young Sun;Lee, Sang Soo
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.123-133
    • /
    • 2015
  • PURPOSES : This study aimed to develop a new highway capacity estimation method and provide comparative results among traditional capacity estimation methods and the recommended values in the latest version of KHCM. METHODS : The limitations of the existing methods, such as inconsistency and underestimation of the capacity value, are summarized through an extensive literature review. To overcome these limitations, a new method is introduced by adopting a definition of capacity and traffic flow characteristics at or near breakdown points. This method can produce the capacity value by searching a point corresponding to the maximum traffic flow through analysis of gradient changes (point of inflection) of the traffic flow and speed distribution. Comparative results of capacity values from each method are also presented to validate the new method by using data collected from detectors on freeways. RESULTS: From the analysis results, it is shown that a consistent capacity value can be estimated by applying the new method. In addition, the resulting capacity values are 3%-4% higher than those recommended in KHCM. CONCLUSIONS : The capacity values listed in the current KHCM tend to produce underestimated results. The new method presented in this paper may be included in the future edition of KHCM.

Characterizations of Thermal Compound Using CuO Particles Grown by Wet Oxidation Method (습식 산화법으로 성장된 산화구리입자를 이용한 방열 컴파운드 제조 및 특성 연구)

  • Lee, Dong Woo;Um, Chang Hyun;Chu, Jae Uk
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.221-228
    • /
    • 2017
  • Various morphologies of copper oxide (CuO) have been considered to be of both fundamental and practical importance in the field of electronic materials. In this study, using Cu ($0.1{\mu}m$ and $7{\mu}m$) particles, flake-type CuO particles were grown via a wet oxidation method for 5min and 60min at $75^{\circ}C$. Using the prepared CuO, AlN, and silicone base as reagents, thermal interface material (TIM) compounds were synthesized using a high speed paste mixer. The properties of the thermal compounds prepared using the CuO particles were observed by thermal conductivity and breakdown voltage measurement. Most importantly, the volume of thermal compounds created using CuO particles grown from $0.1{\mu}m$ Cu particles increased by 192.5 % and 125 % depending on the growth time. The composition of CuO was confirmed by X-ray diffraction (XRD) analysis; cross sections of the grown CuO particles were observed using focused ion beam (FIB), field emission scanning electron microscopy (FE-SEM), and energy dispersive analysis by X-ray (EDAX). In addition, the thermal compound dispersion of the Cu and Al elements were observed by X-ray elemental mapping.

Electrical Properties of Low Density Polyethylene Film by Superstructure Change (고차구조 변화에 따른 저밀도폴리에틸렌 박막의 전기적 특성)

  • Shin, Jong-Yeol;Shin, Hyun-Taek;Lee, Soo-Won;Hong, Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.101-109
    • /
    • 2002
  • The electrical properties of polyethylene are changed by the superstructure. Such crystalline polymer as polyethylene or polypropylene changes crystallinity and products spherulite or trans-crystal when it is cooled slowly. In this study, after thermal treatment of LDPE at 100[${circ}C$], in silicone oil for an hour, we made specimens in order of slow cooling, water cooling, quenching according to cooling speed. Also, to study the influence of electrical properties due to the superstructure change, we analyzed physical properties and performed dielectric breakdown experiments using DC and impulse voltage Moreover we measured space charges in bulk using Laser Induced Pressure Pulse(LIPP) method. Trap level of specimen is 0.064[eV] at the low temperature region 0.31[eV] at the high temperature region in DC dielectric strength, 0.03[eV] at the low temperature region 0.0925[eV] at the high temperature region in impulse dielectric strength. As its result shows that the quantity of charges induced from the electrode surface increases with applied voltage time, and the distribution of space charges in samples increases the quantity of charges in proportion to applied voltage.

Comparing Empirical Methods of Highway Capacity Estimation (실험적 용량산정 방법 비교 연구)

  • Moon, Jaepil;Cho, Won Bum
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • PURPOSES : Capacity is a main factor of determining the number of lane in highway design or the level of service in road on operation. Previous studies showed that breakdown may occur before capacity is reached, and then it was concluded that capacity is a stochastic value rather than a deterministic one. In general, estimating capacity is based on average over maximum traffic volume observed for capacity state. This method includes the empirical distribution method(EDM) and would underestimate capacity. This study estimated existing empirical methods of estimating stochastic highway capacity. Among the studied methods are the product limit method(PLM) and the selected method(SM). METHODS : Speed and volume data were collected at three freeway bottleneck sites in Cheonan-Nonsan and West Sea Freeway. The data were grouped into a free-flow state or capacity state with speeds observed in the bottlenecks and the upstream. The data were applied to the empirical methods. RESULTS : The results show that the PLM and SM estimated capacity higher than EDM. The reason is that while the EDM is based on capacity observations only, the PLM and SM are based on free-flow high volumes and capacity observations. CONCLUSIONS : The PLM and SM using both free-flow and capacity observations would be improved to enhance the reliability of the capacity estimation.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

Processing Speed Improvement of Software for Automatic Corner Radius Analysis of Laminate Composite using CUDA (CUDA를 이용한 적층 복합재 구조물 코너 부의 자동 구조 해석 소프트웨어의 처리 속도 향상)

  • Hyeon, Ju-Ha;Kang, Moon-Hyae;Moon, Yong-Ho;Ha, Seok-Wun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.7
    • /
    • pp.33-40
    • /
    • 2019
  • As aerospace industry has been activated recently, it is required to commercialize composite analysis software. Until now, commercial software has been mainly used for analyzing composites, but it has been difficult to use due to high price and limited functions. In order to solve this problem, automatic analysis software for both in-plane and corner radius strength, which are all made on-line and generalized, has recently been developed. However, these have the disadvantage that they can not be analyzed simultaneously with multiple failure criteria. In this paper, we propose a method to greatly improve the processing speed while simultaneously handling the analysis of multiple failure criteria using a parallel processing platform that only works with a GPU equipped with a CUDA core. We have obtained satisfactory results when the analysis speed is experimented on the vast structure data.

A Computational Study of the Vortical Flows over a Delta Wing At High-Angle of Attack (고영각의 델타익에서 발생하는 와유동에 관한 수치해석적 연구)

  • Kim Hyun-Sub;Kweon Yong-Hun;Kim Heuy-Dong;Shon Myong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.795-798
    • /
    • 2002
  • This paper dispicts the vortical flow characteristics over a delta wing using a computational analysis for the purpose of investigating and visualizing the effect of the angle of attack and fee stream velocity on the low-speed delta wing aerodynamics. Computations are applied to the full, 3-dimensional, compressible, Navier-Stokes Equations. In computations, the free stream velocity is changed between 20m/s and 60m/s and the angle of attack of the delta wing is changed between $16^{\circ}\;and\;28^{\circ}$. For the correct prediction of the major features associated with the delta wing vortex flows, various turbulence models are tested. The standard $k-{\varepsilon}$ turbulence model predict well the vertical flows over the delta wing. Computational results are compared with the previous experimental ones. It is found that the present CFD results predict the vortical flow characteristics over the delta wing, and with an increase in the free steam velocity, the leading edge vortex moves outboard and its streangth is increased.

  • PDF

Train Regulation by the Advanced Algorithm for Subway (개선된 알고리즘에 의한 지하철 운행간격 제어)

  • Park, Hong-Kyu;Shim, Won-Sup;Hong, Soon-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.330-333
    • /
    • 2002
  • Even if the train of subway starts in a certain interval from the origin according to the operation plan. as the number of passenger gets increased during operation. the boarding and getting-off time will increase, and the temporary breakdown happens to the system of train during operation, causing the delay from the operation plan. this leads to the vicious circle of train operation. making the interval of train operation irregular in downtown especially. To solve this problem, we propose the method of advanced algorithm by the actual data relating to the train operation including operation time required between stations, distance between stations. capability of train, and the dwelling time, location and distance between the preceding train and next one. The central train control system adjusts the dwelling time at each station in order to recover the delayed time, and increase the operation speed at the each station. As control algorithm is applied the dwelling time and to increase the speed, the train maintains certain interval after certain amount of time passes.

  • PDF

Mixed-mode Simulation of Switching Characteristics of SiC DMOSFETs (Mixed-mode 시뮬레이션을 이용한 SiC DMOSFETs의 스위칭 특성 분석)

  • Kang, Min-Seok;Choi, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.737-740
    • /
    • 2009
  • SiC power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics, In this paper, we demonstrated that the switching performance of DMOSFETs are dependent on the with Channel length ($L_{channel}$) and Current Spreading Layer thickness ($T_{CSL}$) by using 2-D Mixed-mode simulations. The 4H-SiC DMOSFETs with a JFET region designed to block 800 V were optimized for minimum loss by adjusting the parameters of the JFET region, CSL, and epilayer. It is found that improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the gate-source capacitance and channel resistance. Therefore, accurate modeling of the operating conditions are essential for the optimizatin of superior switching performance.

A Study on Composition of Position Detection System using GPS (GPS 위치검지시스템 구성에 관한 연구)

  • Han, Young-Jae;Park, Choon-Soo;Lee, Tae-Hyoung;Kim, Ki-Hwan;Eun, Jong-Phil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.151-155
    • /
    • 2008
  • KHST(Korean High Speed Train) has been utilized the total measurement system which evaluates the efficiency and a breakdown of the vehicle and it's results effect to secure reliability of the vehicle. Generally KHST has been received pulse signals from the wheel. It calculates the travel distance after counter the signals to confirm location information of the vehicle. However, there is a limit to measure the location of the vehicle due to slip, slide and the wheel attrition. We have developed a new measurement system by using GPS to complement those errors. In general, GPS receivers are composed of an antenna, tuned to the frequencies transmitted by the satellites, receiver-processors, and a highly-stable clock The GPS mounted on the roof of TT4 in KHST receives a signal from the RS232 communication port. It is connected to the network system in TT3 after converting with TCPIP communication. It is able to track the position of vehicle and synchronize the signal from different measurement system simultaneously. Therefore it is able to chase the fault occurrence, track inspection and electrical interruption at real-time situation more accurately. There is not an error coursed by vehicle conditions such as slip and the slide.