Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.4.221

Characterizations of Thermal Compound Using CuO Particles Grown by Wet Oxidation Method  

Lee, Dong Woo (Research & Development Institute, Youngyiel Precision Co., Ltd.)
Um, Chang Hyun (Research & Development Institute, Youngyiel Precision Co., Ltd.)
Chu, Jae Uk (Research & Development Institute, Youngyiel Precision Co., Ltd.)
Publication Information
Korean Journal of Materials Research / v.27, no.4, 2017 , pp. 221-228 More about this Journal
Abstract
Various morphologies of copper oxide (CuO) have been considered to be of both fundamental and practical importance in the field of electronic materials. In this study, using Cu ($0.1{\mu}m$ and $7{\mu}m$) particles, flake-type CuO particles were grown via a wet oxidation method for 5min and 60min at $75^{\circ}C$. Using the prepared CuO, AlN, and silicone base as reagents, thermal interface material (TIM) compounds were synthesized using a high speed paste mixer. The properties of the thermal compounds prepared using the CuO particles were observed by thermal conductivity and breakdown voltage measurement. Most importantly, the volume of thermal compounds created using CuO particles grown from $0.1{\mu}m$ Cu particles increased by 192.5 % and 125 % depending on the growth time. The composition of CuO was confirmed by X-ray diffraction (XRD) analysis; cross sections of the grown CuO particles were observed using focused ion beam (FIB), field emission scanning electron microscopy (FE-SEM), and energy dispersive analysis by X-ray (EDAX). In addition, the thermal compound dispersion of the Cu and Al elements were observed by X-ray elemental mapping.
Keywords
copper oxide; wet oxidation method; thermal interface material; thermal conductivity; breakdown voltage.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G.-W. Lee, M. Park, J. Kim, J. I. Lee and H. G. Yoon Compos. Appl. Sci. Manuf., 37, 727 (2006).   DOI
2 A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M. E. Itkis and R. C. Haddon, Adv. Mater., 20, 4740 (2008).   DOI
3 W. Yu, J. Zhao, M. Wang, Y. Hu, L. Chen and H. Xie, Nanoscale Res. Lett., 10, 113 (2015).   DOI
4 M. S. Liu, M. C. Lin and C. C. Wang, Nanoscale Res. Lett., 6, 297 (2011).   DOI
5 M. N. Rashin and J. Hemalatha, J. Mol. Liq., 197, 257 (2014).   DOI
6 M. S. Liu, M. C. Lin, I. T. Huang and C. C. Wang, Chem. Eng. Technol., 29, 72 (2006).   DOI
7 S. U. S. Choi and J. A. Eastman, in ASME International Mechanical Engineering Congress & Exposition (San Francisco, CA, November 1995).
8 K. Ahn, K. Kim, J. Kim and W. Cho, Polym (in Korea)., 39, 961 (2015).   DOI
9 C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara and D. Golberg, Adv. Funct. Mater., 19, 1857 (2009).   DOI
10 R. Prasher, Proc. IEEE, 94, 1571 (2006).   DOI
11 J. A. Parkinson and S. E. Allen, Commun. Soil Sci. Plant Anal. 6, 1 (1975).
12 C. T. Murray, P. Kendall, A. Larson, C. Harvey and G. Staus, Thermal Conductivity, 28, 309 (2006).
13 Y. Zhu, K. Mimura and M. Isshiki, Mater. Trans., 43, 2173 (2002).   DOI
14 J. H. Park and K. Natesan, Oxid. Met., 39, 411 (1993).   DOI
15 O. Pena-Rodriguez and U. Pal, J. Opt. Soc. Am. B, 28, 2735 (2011).   DOI
16 J. Jiang, G. Oberdorster and P. Biswas, J. Nanopart. Res., 11, 77 (2009).   DOI
17 D. D. L. Chung, J. Mater. Eng. Perform., 10, 56 (2001).   DOI
18 E. Zambolin and D. D. Col, Sol. Energy, 84, 1382 (2010).   DOI
19 M. L. S. Fuller, M. Kasrai, G. M. Bancroft, K. Fyfe and K. H. Tan, Tribol. Int., 31, 627 (1998).   DOI
20 W. K. Loh, A. D. Crocombe, M. M. A. Wahab and I. A. Ashcroft, Int. J. Adhes. Adhes., 25, 1 (2005).   DOI
21 J. P. Gwinn and R. L. Webb, Microelectron. J., 34, 215 (2003).   DOI
22 Z. Ai, L. Zhang, S. Lee and W. Ho, J. Phys. Chem. C, 113, 20896 (2009).   DOI
23 R. Tsu, J. W. Mcpherson and W. R. Mckee, 38th Annual International Reliability Physics Symposium (San Jose, California, 2000).
24 U. Nerle and M. K. Rabinal, IOSR J. Appl. Phys., 5, 1 (2013).
25 J. Hong and S.-E. Shim, Appl. Chem. Eng. (in Korea), 21, 115 (2010).