• Title/Summary/Keyword: Speech/non-speech classification

Search Result 37, Processing Time 0.023 seconds

Classification of Phornographic Videos Using Audio Information (오디오 신호를 이용한 음란 동영상 판별)

  • Kim, Bong-Wan;Choi, Dae-Lim;Bang, Man-Won;Lee, Yong-Ju
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.207-210
    • /
    • 2007
  • As the Internet is prevalent in our life, harmful contents have been increasing on the Internet, which has become a very serious problem. Among them, pornographic video is harmful as poison to our children. To prevent such an event, there are many filtering systems which are based on the keyword based methods or image based methods. The main purpose of this paper is to devise a system that classifies the pornographic videos based on the audio information. We use Mel-Cepstrum Modulation Energy (MCME) which is modulation energy calculated on the time trajectory of the Mel-Frequency cepstral coefficients (MFCC) and MFCC as the feature vector and Gaussian Mixture Model (GMM) as the classifier. With the experiments, the proposed system classified the 97.5% of pornographic data and 99.5% of non-pornographic data. We expect the proposed method can be used as a component of the more accurate classification system which uses video information and audio information simultaneously.

  • PDF

Voice Activity Detection in Noisy Environment using Speech Energy Maximization and Silence Feature Normalization (음성 에너지 최대화와 묵음 특징 정규화를 이용한 잡음 환경에 강인한 음성 검출)

  • Ahn, Chan-Shik;Choi, Ki-Ho
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2013
  • Speech recognition, the problem of performance degradation is the difference between the model training and recognition environments. Silence features normalized using the method as a way to reduce the inconsistency of such an environment. Silence features normalized way of existing in the low signal-to-noise ratio. Increase the energy level of the silence interval for voice and non-voice classification accuracy due to the falling. There is a problem in the recognition performance is degraded. This paper proposed a robust speech detection method in noisy environments using a silence feature normalization and voice energy maximize. In the high signal-to-noise ratio for the proposed method was used to maximize the characteristics receive less characterized the effects of noise by the voice energy. Cepstral feature distribution of voice / non-voice characteristics in the low signal-to-noise ratio and improves the recognition performance. Result of the recognition experiment, recognition performance improved compared to the conventional method.

Prediction of Break Indices in Korean Read Speech (국어 낭독체 발화의 운율경계 예측)

  • Kim Hyo Sook;Kim Chung Won;Kim Sun Ju;Kim Seoncheol;Kim Sam Jin;Kwon Chul Hong
    • MALSORI
    • /
    • no.43
    • /
    • pp.1-9
    • /
    • 2002
  • This study aims to model Korean prosodic phrasing using CART(classification and regression tree) method. Our data are limited to Korean read speech. We used 400 sentences made up of editorials, essays, novels and news scripts. Professional radio actress read 400sentences for about two hours. We used K-ToBI transcription system. For technical reason, original break indices 1,2 are merged into AP. Differ from original K-ToBI, we have three break index Zero, AP and IP. Linguistic information selected for this study is as follows: the number of syllables in ‘Eojeol’, the location of ‘Eojeol’ in sentence and part-of-speech(POS) of adjacent ‘Eojeol’s. We trained CART tree using above information as variables. Average accuracy of predicting NonIP(Zero and AP) and IP was 90.4% in training data and 88.5% in test data. Average prediction accuracy of Zero and AP was 79.7% in training data and 78.7% in test data.

  • PDF

Speech Enhancement Based on IMCRA Incorporating noise classification algorithm (잡음 환경 분류 알고리즘을 이용한 IMCRA 기반의 음성 향상 기법)

  • Song, Ji-Hyun;Park, Gyu-Seok;An, Hong-Sub;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1920-1925
    • /
    • 2012
  • In this paper, we propose a novel method to improve the performance of the improved minima controlled recursive averaging (IMCRA) in non-stationary noisy environment. The conventional IMCRA algorithm efficiently estimate the noise power by averaging past spectral power values based on a smoothing parameter that is adjusted by the signal presence probability in frequency subbands. Since the minimum of smoothing parameter is defined as 0.85, it is difficult to obtain the robust estimates of the noise power in non-stationary noisy environments that is rapidly changed the spectral characteristics such as babble noise. For this reason, we proposed the modified IMCRA, which adaptively estimate and updata the noise power according to the noise type classified by the Gaussian mixture model (GMM). The performances of the proposed method are evaluated by perceptual evaluation of speech quality (PESQ) and composite measure under various environments and better results compared with the conventional method are obtained.

Robust Speech Recognition Algorithm of Voice Activated Powered Wheelchair for Severely Disabled Person (중증 장애우용 음성구동 휠체어를 위한 강인한 음성인식 알고리즘)

  • Suk, Soo-Young;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.250-258
    • /
    • 2007
  • Current speech recognition technology s achieved high performance with the development of hardware devices, however it is insufficient for some applications where high reliability is required, such as voice control of powered wheelchairs for disabled persons. For the system which aims to operate powered wheelchairs safely by voice in real environment, we need to consider that non-voice commands such as user s coughing, breathing, and spark-like mechanical noise should be rejected and the wheelchair system need to recognize the speech commands affected by disability, which contains specific pronunciation speed and frequency. In this paper, we propose non-voice rejection method to perform voice/non-voice classification using both YIN based fundamental frequency(F0) extraction and reliability in preprocessing. We adopted a multi-template dictionary and acoustic modeling based speaker adaptation to cope with the pronunciation variation of inarticulately uttered speech. From the recognition tests conducted with the data collected in real environment, proposed YIN based fundamental extraction showed recall-precision rate of 95.1% better than that of 62% by cepstrum based method. Recognition test by a new system applied with multi-template dictionary and MAP adaptation also showed much higher accuracy of 99.5% than that of 78.6% by baseline system.

Articulation Ability and Phonological Process in Multicultural Family Children (다문화가정 아동의 조음능력 및 음운변동 특성)

  • Yoo, Hyun-Joo;Kim, Hyang-Hee;Kim, Wha-Soo;Shin, Ji-Cheol
    • Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.133-144
    • /
    • 2008
  • The present study examined multicultural family children's articulation accuracy and phonological process using Assessment of Phonology and Articulation for Children(APAC), and compared them with normally developing children. The subjects of this study were 24 multicultural family children between ages 3 years, 6 months and 3 years, 11 months. The multicultural family children's articulation accuracy was significantly lower than the normally developing children's. In case of the normally developing children, phonological processes the multicultural family children showed were observed at a younger age and did not appear at the age of the children participating in this study. The Japanese multicultural family children and the non Japanese multicultural family children showed different rate of the changes. This result shows that articulation development in the multicultural family children may be different among them according to the classification and that the children's error patterns are related to their mothers' native language. The results of this study are proposed to be applicable to articulation assessment and treatment.

  • PDF

Japanese and Korean speakers' production of Japanese fricative /s/ and affricate /ts/

  • Yamakawa, Kimiko;Amano, Shigeaki
    • Phonetics and Speech Sciences
    • /
    • v.14 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • This study analyzed the pronunciations of Japanese fricative /s/ and affricate /ts/ by 24 Japanese and 40 Korean speakers using the rise and steady+decay durations of their frication part in order to clarify the characteristics of their pronunciations. Discriminant analysis revealed that Japanese speakers' /s/ and /ts/ were well classified by the acoustic boundaries defined by a discriminant function. Using this boundary, Korean speakers' production of /s/ and /ts/ was analyzed. It was found that, in Korean speakers' pronunciation, misclassification of /s/ as /ts/ was more frequent than that of /ts/ as /s/, indicating that both the /s/ and /ts/ distributions shift toward short rise and steady+decay durations. Moreover, their distributions were very similar to those of Korean fricatives and affricates. These results suggest that Korean speakers' classification error might be because of their use of Korean lax and tense fricatives to pronounce Japanese /s/, and Korean lax and tense affricates to pronounce Japanese /ts/.

A Study on the Signal Processing for Content-Based Audio Genre Classification (내용기반 오디오 장르 분류를 위한 신호 처리 연구)

  • 윤원중;이강규;박규식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.271-278
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital sign processing approach. From the 20 seconds query audio file, the audio signal is segmented into 23ms frame with non-overlapped hamming window and 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS(Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we can verify the superior performance of the proposed method that provides near 90% success rate for the genre classification which means 10%∼20% improvements over the previous methods. For the case of actual user system environment, feature vector is extracted from the random interval of the query audio and it shows overall 80% success rate except extreme cases of beginning and ending portion of the query audio file.

Classification of Phornographic Videos Based on the Audio Information (오디오 신호에 기반한 음란 동영상 판별)

  • Kim, Bong-Wan;Choi, Dae-Lim;Lee, Yong-Ju
    • MALSORI
    • /
    • no.63
    • /
    • pp.139-151
    • /
    • 2007
  • As the Internet becomes prevalent in our lives, harmful contents, such as phornographic videos, have been increasing on the Internet, which has become a very serious problem. To prevent such an event, there are many filtering systems mainly based on the keyword-or image-based methods. The main purpose of this paper is to devise a system that classifies pornographic videos based on the audio information. We use the mel-cepstrum modulation energy (MCME) which is a modulation energy calculated on the time trajectory of the mel-frequency cepstral coefficients (MFCC) as well as the MFCC as the feature vector. For the classifier, we use the well-known Gaussian mixture model (GMM). The experimental results showed that the proposed system effectively classified 98.3% of pornographic data and 99.8% of non-pornographic data. We expect the proposed method can be applied to the more accurate classification system which uses both video and audio information.

  • PDF

Pedestrian recognition using differential Haar-like feature based on Adaboost algorithm to apply intelligence wheelchair (지능형 휠체어 적용을 위해 Haar-like의 기울기 특징을 이용한 아다부스트 알고리즘 기반의 보행자 인식)

  • Lee, Sang-Hun;Park, Sang-Hee;Lee, Yeung-Hak;Seo, Hee-Don
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.481-486
    • /
    • 2010
  • In this paper, we suggest an advanced algorithm, to recognize pedestrian/non-pedestrian using differential haar-like feature, which applies Adaboost algorithm to make a strong classification from weak classifications. First, we extract two feature vectors: horizontal haar-like feature and vertical haar-like feature. For the next, we calculate the proposed feature vector using differential haar-like method. And then, a strong classification needs to be obtained from weak classifications for composite recognition method using the differential area of horizontal and vertical haar-like. In the proposed method, we use one feature vector and one strong classification for the first stage of recognition. Based on our experiment, the proposed algorithm shows higher recognition rate compared to the traditional method for the pedestrian and non-pedestrian.