• Title/Summary/Keyword: Spectral representation

Search Result 94, Processing Time 0.025 seconds

Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

  • Sima, Haifeng;Mi, Aizhong;Han, Xue;Du, Shouheng;Wang, Zhiheng;Wang, Jianfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5015-5038
    • /
    • 2018
  • In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

RAG-based Hierarchical Classification (RAG 기반 계층 분류 (2))

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • This study proposed an unsupervised image classification through the dendrogram of agglomerative clustering as a higher stage of image segmentation in image processing. The proposed algorithm is a hierarchical clustering which includes searching a set of MCSNP (Mutual Closest Spectral Neighbor Pairs) based on the data structures of RAG(Regional Adjacency Graph) defined on spectral space and Min-Heap. It also employes a multi-window system in spectral space to define the spectral adjacency. RAG is updated for the change due to merging using RNV (Regional Neighbor Vector). The proposed algorithm provides a dendrogram which is a graphical representation of data. The hierarchical relationship in clustering can be easily interpreted in the dendrogram. In this study, the proposed algorithm has been extensively evaluated using simulated images and applied to very large QuickBird imagery acquired over an area of Korean Peninsula. The results have shown it potentiality for the application of remotely-sensed imagery.

FEYNMAN-KAC SEMIGROUPS, MARTINGALES AND WAVE OPERATORS

  • Van Casteren, Jan A.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.227-274
    • /
    • 2001
  • In this paper we intended to discuss the following topics: (1) Notation, generalities, Markov processes. The close relationship between (generators of) Markov processes and the martingale problem is exhibited. A link between the Korovkin property and generators of Feller semigroups is established. (2) Feynman-Kac semigroups: 0-order regular perturbations, pinned Markov measures. A basic representation via distributions of Markov processes is depicted. (3) Dirichlet semigroups: 0-order singular perturbations, harmonic functions, multiplicative functionals. Here a representation theorem of solutions to the heat equation is depicted in terms of the distributions of the underlying Markov process and a suitable stopping time. (4) Sets of finite capacity, wave operators, and related results. In this section a number of results are presented concerning the completeness of scattering systems (and its spectral consequences). (5) Some (abstract) problems related to Neumann semigroups: 1st order perturbations. In this section some rather abstract problems are presented, which lie on the borderline between first order perturbations together with their boundary limits (Neumann type boundary conditions and) and reflected Markov processes.

  • PDF

A Representation of Green Function Using Discrete Wavelet Concept for Fast Field Analysis (고속 전자파 해석을 위한 그린 함수의 이산 웨이블릿 표현법)

  • Kim Hyung-Hoon;Park Jong-Il;Kim Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.895-899
    • /
    • 2006
  • A compact representation of Green function is proposed by applying the discrete wavelet concept in the k-domain, which can be used for the acceleration of scattered field calculations in integral equation methods. Since the representation of Green function is very compact in the joint spatio-spectral domain, it can be effectively utilized in the fast computation of radiation integral of electromagnetic problems. A mathematical expression of Green function based on the discrete wavelet concept is derived and its characteristics are discussed.

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.

Intra-and Inter-frame Features for Automatic Speech Recognition

  • Lee, Sung Joo;Kang, Byung Ok;Chung, Hoon;Lee, Yunkeun
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.514-517
    • /
    • 2014
  • In this paper, alternative dynamic features for speech recognition are proposed. The goal of this work is to improve speech recognition accuracy by deriving the representation of distinctive dynamic characteristics from a speech spectrum. This work was inspired by two temporal dynamics of a speech signal. One is the highly non-stationary nature of speech, and the other is the inter-frame change of a speech spectrum. We adopt the use of a sub-frame spectrum analyzer to capture very rapid spectral changes within a speech analysis frame. In addition, we attempt to measure spectral fluctuations of a more complex manner as opposed to traditional dynamic features such as delta or double-delta. To evaluate the proposed features, speech recognition tests over smartphone environments were conducted. The experimental results show that the feature streams simply combined with the proposed features are effective for an improvement in the recognition accuracy of a hidden Markov model-based speech recognizer.

A study on the spectrum assignment problem for a functional linear system (함수선형계의 스펙트럼지정문제에 관한 연구)

  • 이장우
    • 전기의세계
    • /
    • v.31 no.3
    • /
    • pp.209-217
    • /
    • 1982
  • This paper considers a finite spectrum assignment Problem for a functional retarded linear differential system with delays in control only. In this problem, by generalizing from an abstract linear system characterized by Semigroups on a Hilbert space to a finite dimensional linear system, we unify the relationship between a control-delayed system and its non-delayed system, and then by using the spectrum of the generator-decomposition of Semigroup, we try to get a feedback law which yields a finite spectrum of the closed-loop system, located at an arbitrarily preassigned sets of n points in the complex plane. The comparative examinations between the standard spectrum assignment method and the method of spectral projection for the feedback law which consists of proportional and finite interval terms over present and past values of control variables are also considered. The analysis is carry down to the elementary spectral projection level because, in spite of all the research efforts, so far there has been no significant attempt to obtain the feedback implementation directly from the abstract representation forms in the case of multivariables.

  • PDF

Multiple change-point estimation in spectral representation

  • Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.127-150
    • /
    • 2022
  • We discuss multiple change-point estimation as edge detection in piecewise smooth functions with finitely many jump discontinuities. In this paper we propose change-point estimators using concentration kernels with Fourier coefficients. The change-points can be located via the signal based on Fourier transformation system. This method yields location and amplitude of the change-points with refinement via concentration kernels. We prove that, in an appropriate asymptotic framework, this method provides consistent estimators of change-points with an almost optimal rate. In a simulation study the proposed change-point estimators are compared and discussed. Applications of the proposed methods are provided with Nile flow data and daily won-dollar exchange rate data.

Radiation Characteristics of the Bianisotropic Superstrate-Loaded Microstrip Antenna on Cylindrical Bianisotropic Substrates (쌍이방성 기판에 쌍이방성 덮개층을 갖는 원통형 마이크로스트립안테나의 방사특성)

  • Yoon, Joong-Han;Choi, Byung-Ha
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.29-38
    • /
    • 1999
  • In this paper, the effects of superstrate on the radiation patterns of dipole on cylindrical bianisotropic subtrates were studied. Special constitutive relations are used to describe the bianisotropic properties of a material, such that the Green's function can be formulated. Electromagnetic fields and hounds conditions in spectral region were used to find Creen's function of the spectral representation and electromagnetic fields in space region were derived through inverse Fourier transformations of fields in spectral region using asymptotic formula for far zone. Radiation characteristics of axial Hertzian dipole on superstrate leaded cylindrical bianisotropic substrates were analyzed.

  • PDF