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FEYNMAN-KAC SEMIGROUPS,
MARTINGALES AND WAVE OPERATORS

JAN A. VAN CASTEREN

ABSTRACT. In this paper we intend to discuss the following topics:
Notation, generalities, Markov processes. The close relationship be-
tween (generators of) Markov processes and the martingale problem
is exhibited. A link between the Korovkin property and generators
of Feller semigroups is established.

Feynman-Kac semigroups: 0O-order regular perturbations, pinned
Markov measures. A basic representation via distributions of Markov
processes is depicted.

Dirichlet semigroups: O-order singular perturbations, harmenic func-
tions, multiplicative functionals. Here a representation theorem of
solutions to the heat equation is depicted in terms of the distri-
butions of the underlying Markov process and a suitable stopping
time.

Sets of finite capacity, wave operators, and related results. In this
section a number of results are presented concerning the complete-
ness of scattering systems (and its spectral consequences).

Some (abstract) problems related to Neumann semigroups: 1st or-
der perturbations. In this section some rather abstract problems are
presented, which lie on the borderline between first order perturba-
tions together with their boundary limits {Neumann type boundary
conditions and) and reflected Markov processes.
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1. Notation, generalities, Markov processes

The following notation will be used throughout this paper. By E
we mean a locally compact second countable Hausdorfl space; E& =
EU{A} is the one-point compactification of E, or, if F is itself compact,
then A is an isolated point of E. The state space E (E%) is supplied
with its Borel field £ (£2). The sample space Q = D ({0,00], E2),
called Skorohod space, which is a polish space for a suitable metric, is
given by
(1)

Q= {w:[0,00] — EA w cadlag on [0,{),w(s)=A,t > s = w(t) = A};

The symbol ¢ stands for the life time {(w) = inf{s > 0: w(s) = A}
of the sample path w. The state variables X (t) : @ — E® are defined
by X{t){w) = w(t).

The o-fields F;, £ > 0, constitute a filtration; in principle they are
given by F; = o{X(s) : 0 < s < t). Their interpretation is that of infor-
mation from the past. The o-field generated by {X (s} : s > t} is inter-
preted as the information from the future. The o-field { X (t)eB : B € &}
is interpreted as the present information.

The family (F;),. is called the history of the process. By ¥ we mean
F = o(X(s) : s > 0). The (time) translation operators are defined by
[Fe(w)] (5) = w(s +1).

By definition, a function f : E — C belongs to the space Cy(FE), if
it is continuous and if for every ¢ > 0 there exists a compact subset
K = K. of E such that |f(z){ <z forxz ¢ K.

DEFINITION 1. A family {S(t) : ¢t > 0} of operators defined on L>®(E)
is a Feller semigroup on Cy(F) if it possesses the following properties:

(1) It leaves Cy(E) invariant: S{t)Co(E) C Co(E) for ¢t > 0;

(ii) It is a semigroup: S(s + 1) = S(s) o S{¢) for all s, t > 0, and
S(0)y=1;

(iii) It consists of contraction operators: || S(£)f]l., < ||fll. forallt > 0
and for all f € Cy(E);

{iv} It is positivity preserving: f > 0, f € Cy(E), implies S(¢)f > 0;

(v) It is continuous for ¢ = 0: limy o [S(¢)f] (z) = f(z), for all f €
Co(E) and for all z € E.
In the presence of (iii) and (ii), property (v) is equivalent to:

(v7) Yimyg ||S(E)f — fllo = 0 for all f € Cy(E). So that a Feller semi-
group is in fact strongly continuous in the sense that £1'_>111t||8 (s}f—
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S(t)f|leo = 0, for every f € Co(E). A strongly continuous semi-
group {S(t):t >0} is called a Feller semigroup if it possesses
the following positivity property: for all f € Cy(E), for which
0 < f <1, and for all £ > 0, the inequality 0 < S{¢)f < 1 is true.

Parts of Theorem 2 are proved in [48].

THEOREM 2.

(a) (Blumenthal and Getoor [5]) Let {S(t) : t >} be a Feller semigroup
in Co(E). Then there exists a strong Markov process (in fact a
Hunt process)

(1.1)  {(,F,P),(X(t):¢>0),(%:t>0),(F,E)}, suchthat
12)  [S0f]() = Be[[(XE)], fCo(E), t20.

Moreover this Markov process is normal (i.e. Py [X (0} = =} = 1),
is right continuous (i.e. limy, X(¢) = X(s), Pz-almost surely),
possesses left limits in E on its life time (i.e. limys X (t) exists in E,
whenever { > s), and is quasi-lefi-continuous (i.e. if (I}, : n € N)
is an increasing sequence of (F,)-stopping times, X (T,,) converges
P,-almost surely to X(T) on the event {T < oo}, where T =

SUDpenN 1)
(b) Conversely, let

{(,F,P.), (X(t): £ 20}, (9 : t > 0),(E, &)}

be a strong Markov process which is normal, right continuous, and
possesses left limits in E on its life time. Put

[S()f] (z) = B [f(X(£))]
for f a bounded Borel function, t > 0, x € E. Suppose thai
S(t)f belongs to Cy(E) for [ belonging to Co{E), t > 0. Then
{S(t) : t > 0} is a Feller semigroup.
(c) Let L be the generator of a Feller semigroup in Cp(E) and let

(.5, P.), (X(0) 112 0), (0 : £ 2 0), (F,€))

be the corresponding Markov process. For every f € D(L) and for
every « € F, the process

(1.3) ts FX (1)) - FX(0)) f Lf(X(s))ds

is a Py-martingale for the filtration (9})20, where each o-fleld F,
t > 0, is (some closure of) o (X(u) : uw < ). In fact the o-field F;
may taken to be F; = (,,, o (X(u) : u < s). It is also possible to
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complete F; with respect to P, given by P, (A) = [P.(4
For F, the following o-field may be chosen:

m ﬂ {P-completion of o (X(u):u <s)}.
uCP(B) 5>t

(d) Conversely, let L be a densely defined linear operator with domain
D{L) and range R(L) in Cy(E). Let (P, :z € E) be a unique
family of probability measures, on an appropriate measure space
(Q,F) with an appropriate filtration (%;),-,, such that, for all
z € B, P,.[X(0) ==x] = 1, and such that for all f € D(L) the
process in {1.3) is a P,-martingale with respect to the filtration
(F¢);>g- Then the operator L possesses a unique extension Ly,
which generates a Feller semigroup in Cy(E).

(e) (Unique Markov extensions) Suppose thai the densely defined lin-
ear operator L (with domain and range in Co(E)) possesses the
Korovkin property as well as the following one. For every A > 0
(large) and for every h € D(L), the inequality

(1.4) Asup h(z) < sup (Al — L) h(z) or, equivalently
zeFE xe
. i > —
(1.5) )\mlggh(:r:) > ;Ielg (Al — L) h{z)

is valid. Then L extends to a unique generator Ly of a Feller semi-
group, and the martingale problem is well posed for the operator
L. Moreover, the Markov process associated with Ly solves the
martingale problem uniquely for L.

DEFINITION 3. The operator L possesses the Korovkin property in
the sense that there exists a strictly positive real number {p > 0 such
that for every zp € EU {A} the equality

(L6) afsup {h(ao) + [g = (7~ L) A @)}
(1.7) = sup mf {h(zo) +[g — (I —tol) h] (z)}
heD(L) TEE

is valid for all g € Gy(E).
The proof of assertion (e) is based on the following result.
PROPOSITION 4. Let L be a linear operator with range R(L) and

1
domain D(L) in Cy(F). Fix tyg = o > 0. Suppose that for every xgy €
0
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EU{A}, and for every g € Co(E) the equality

heig{ LS {h(zo) + g — (I — toL) h] (z)}

(1.8) = sup infE {h(zo) + [¢g — (I — toL) b} (z)}
heD(L) %€

is valid. Also suppose that for every A > 0 and for every h € D(L) the
inequality

(1.9) Asup h(z) < sup{Af — L) h(z)
zel gy ot

is valid. Then, for 0 < X < 2), the following identities are true:
AR(N)g(zo) = AT (g, 20, A)

= inf max
ho€D(L),hi €D(L),ho€D{L),... R mEE, ..

(500 2Y e+ 25 (1 2 st

=0 3=0
(1.10)
> A\ 1
— Z (1 - )\—) (I — :\——L) hj ($j+1)}
= 0 0
= lim inf inf max
n—00 hoeD(L),.. hn€D(L) £1€E,12€E, ... 2n4 1 EE
(1.11)
A ANE A 1
— 1— — ho(zo) + —glx —(I——L)h:r}
L\U > (1-2)" {roten)+ oten = (1= 52 folar
A\ = AN '
- 1—- =
* (1 /\0) Zl ( Ao)
J_
A 1
byt + o eyen) (1 2L by (o)
Ao Ao

= inf . Jéna,xE
Pl Tl L, TaE ...
MED(LY,ka €D (L), sho=1 zj‘;‘;l(lf:\%) hy

[32(1- ) htei 255 (1 2 st

J=0 j=0
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- i (1 — %ﬂ)j (I — :\%L) h; (fﬂj+1)}

- ot max {hioo) + [ o= (1 - 3) @)
(1.14)
- an e (-39 o

= .sup min

€L,z F,...

{i (1 - %)j hizs) + X/\“ i (1 - XA‘)J g{zi41)

(1.15)

sup min
hoe D(L),h1c D{L) ha€ D(L),... *1EF02EE,...

o0

{fﬁ (1 : ,\i) o)+ 5 Y (1 - Aio)jg<xj+l)

=0 J=0

(1.16) |
(-%) (-35) hs-w)}

= lim inf sup
N— 00 hoED(L), Shn€D(L) T EE, .'L'EEE WInt1EE

(1.17)

[}% zn: (1 - /\io)j_l {ho(ﬂ?o) + %09(931) - (I - %L) hO(ml)}
o



Feynman-Kac semigroups, martingales and wave operators 233

i=1
{hj($j) + %g (.’L’j+1) - (I - )\ioL) hj ($j+1)}:|
) =53 (1-5) CorGeY gteo)
j=0

A discussion of the proof of Theorem 2 can be found in [48].

For a concise formulation of our results we need another definition.

DEFINITION 5. The operator L with domain D (L%) in C (E®) =
C (EA,R) given by D (LA) = {h eC (EA) ch—h(A) e D(L)}, and
L2h = L(h — h(A)), h € D (L®). Here we wrote h(A) = limg_,» h(z).
It is noticed that L™ satisfies the maximum principle in the sense that
if h € D (L) satisfies supgeg h(z) > h(A), then there exists zg € E
for which h(zg) = supgeg h(z), and for which L%h(zg) < 0. Fix zg € E
and A > 0. The functional g — AT (g,zg,A), g € Co{E), is defined as
follows:

AT (9,20, A)
— inf {h(mo) heD (LA) : (1 _ %LA) h> g}

=,y 2 (e + o= (1=32) ] )
= inf sup min max {h($0)+ [g— (I— ;L) h] (m)}.

rcD(L) acke Hhel zedU{A}
#l'<oo #FD<oxo

The functional g — A~ (g, zo, A), g € Co(E), is defined as follows:
A~ (g, 70, \) = sup {h(ﬂ:g) heD (LA) , (I - %LA) h< g}
1
= sup inf (hm +[g— (I——L)h] a:)
heD(L) T€E (o) A ()

. . 1
= sup ;ng r}{lgg{wegllj?ﬁ} {h(mg) + [g - (I - XL) h] (:c)} .
CD(L) FDoo
#I <o
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Then, with tA = 1,

_A+ (_gs g, /\): sup inf (h(‘TO) + [g - (I - tL) h’] (m)):Ai (g, o, A) 3
helL) EE

with g € Co(E). Since, as is readily proved,
AT (g1 + g2,70, A) < AT (g1, 70, A) + AT (92,20, A)
for g1, g2 € Co(E), we see (again with tA = 1)

heigf 1, Sup (hl@o) + (g — (I — L) h] (z))

— sup inf (A(zo) + [g— (I —tL) B] (2))
heD(L) *€

=A+ (g) Zo, )\) - (_‘A+ (_g) Iy, )\))
=AT (9,20, A) + At (—g.20, A)
ZA-I- (01 Zo, A)

= helgfL) {zgg (I —tL) h(z) — h(mo)} =0.

The seminorm p., is defined by (to = Ag 1 is fixed throughout the
remainder of this section) py,(g) = AT (|g], %o, Ao), g € Co(E).

ProproSITION 6. The following assertions hold true.

(i) The 3 defining expressions for A% (g,20,)) are equal, and hence
these functionals are well-defined.

(ii) The functionals A* (-, 2o, A), zo € E, are sub-additive and positive
homogeneous. The functionals A~ (-, zg, A) are super-additive and
positive homogeneous. Moreover the inequalities

inf g{z) <A™ (g,20,A) < AT (g,20, %) < supg(z), g€ Co{E)
el el

are valid. In addition g2 > g1, g2, g1 € Co(E), implies AT (g2, 0, A)
> At (g1,70,2). In addition, At (o, 29,A) =, 2 € R.
(i) The functionals p,, o € E, are seminorms indeed.
(iv) Let g1 = (I — tpl) hy belong to the range of the operator I — L.
For g belonging to Cy(E) the equalities {(toho = 1)
A% (g4 91,20, Ao)
:Ai (9, xo, )‘0) + A:h (9135(), )\0)
=A* (g, 70, M) + h1(zo)

hold true.
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{(v) The subset M(xzq) of Cy(F) defined by

M(zo) = {g € Co(E) :, inf sup (hizo) +[g — (I = toL) i (2))

(1.19) = sup inf (h(an+[g - (T toL) B (=)}

is a closed linear subspace of Co{E) and g — At (g,x0,A0) = A~
(9,20, M), g € M(zq), is a linear functional on M(zg).
(vi) Let it be a sub-probability measure on E with the property that

/(I — toLY hdp = h{xp) for all h € D(L}.

Then A~ (g,70) < [ gdu < AT (g,20) for all g € Co(E).
The existence of a probability measure pp with the property described in
(vi) is guaranteed by Riesz representation Theorem.

For a proof the reader is referred to [48].

Qutline of a proof of Theorem 2. (a) Assertion (a) is proved in Blu-
menthal and Getoor [5]: Theorem 4.9, page 46.

(b) The semigroup property is an easy consequence of the Markov prop-
erty:

[S()S()4] (@) = Ex [[S()/] (X(5))]
= Eq [Exy [( ))]]
=B, [B; [f(X(t+5)) | 53]

=E, [f{X( t—l—s))] = S(t+s)f(z),

where f is a bounded Borel measurable function. The other assertions
are automatically true.

(¢) Let f be a member of D(L) and put

T

t
Mp(t) = f(X(£)) — F(X(0)) —/D Lf(X(s))ds.
Then, for t» > #; we have

E, [Mf (t2) I 3",51] - M_f (t1) =E; [Mf (t2 — t1) oy, | 3}1]
(1.20) (Markov property) = Ey ) [My (t2 — t1)] -



236 Jan A. Van Casteren

Since, in addition, by virtue of the fact that L generates the semigroup
{S(): t =0},

E. [My(t)] = S()£(2) - f(z) - /s WILf (2)du

=5(t) f( f(z)— / 0 (2)) du
=5()f(z )—f(z) S5() f(z )—S(O)f(z)):o,

the assertion in (c¢) follows from (1.20).
(d) The proof of (d) is to be found in [45]. An outline of the proof can also
be found in [35].There are two issues involved. One is related to the fact
that the functions x +— E, [f(X (¢)] belongs to Cy(E), whenever f does.
The other one is related to the proof of the fact that the complement of
£ in the product space (EA)[U’OQ] is of P -measure zero. The proof of
this fact follows more or less the same pattern as the proof of {a) in [5].
The invariance of the space CO(E) under the action of the semigroup
{S(t) - t > 0}, where S(t)f(z) = E; [f(X(¢))], f bounded measurable
may be based on the followmg facts.

Fact 1: Let P((2) denote the set of probability measures on ¥. The

set
Pey= {P €EP():P(X(0)=2)=1
TeEL
and for every f € D(L) the process
FX(E) - 06O = [ LEK ().t 20,

is a P-martingale }

is a compact metrizable Hausdorff space for an appropriate met-
ric. In other words, the collections of solutions to the martingale
problem is a compact Hausdorff space.

Fact 2: Let E’ be the largest subset of E2 on which the martingale
problem is well-posed. So for every z € E' the martingale problem
is uniquely solvable. Put

P(E,Q)= | {PeP(©):P[X(0)=2]=1}.
zEE’

Define the map F : P/(E',Q) — E® by F(P) = z, where P ¢
P'(Q) is such that P(X{(0) = z) = 1. Also notice that F(Pp) =
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A. Then F is a homeomorphism from P'(E’,Q) onto E'. Con-
sequently for every function u € Cp(E), the function (s,z) —
E.(u(X(s)) is continuous on [0,00) x E'. In particular it follows
that limg—a zep Eg [u(X(s))] = 0.
A combination of these two facts shows that S(t) leaves the space Cy(F)
invariant.

{e) Define the operator AgR(Ap) as follows (Agtg = 1):
MR(h)g(zo)=_inf sup {h{zo) +[g— (I —toL) h] (z)}=A" (9,70, )
heD(L) ge R

=A"(g,20,A)= sup inf {h(zo) + [g ~ (I —toL) b} ()}
heD{L) %€
The function zg > AT {g,z9,A¢) is lower semi-continuous, and the
function zo — A~ (g,%o, Ao} is upper semi-continuous. Consequently
the function AR (Ag) g is continuous. Fix a > 0 and choose ho € D(L)
in such a way that g — (I —toL) hg < jo. Then the inclusions

{wg € E: AR (o) g(wo) = a}

g{:cg € E : ho(xg) +2:g l[9 — (I — toL) ho] (o) > ﬂf}

1
- {330 € E: ho(zo) 2 505}

are valid. Thesc observations prove that AgR (Ao) g belongs to Co(E)
whenever ¢ does so. Then prove that
inf g(z) < JoR(Mo)g(o) < Supg( ), g€ Co(E).

el
Define the operator Ly on D (Lg) = R(R(X)) by the equality

Lo (R(Xo)g) = MoR(Xo)g — g, g € Co(E).

Then Lg verifies the maximum principle (which will be a consequence of
Proposition 4: see Proof of Theorem 2 part (e) conclusion) and the range
of M\gI — Lg coincides with Co(E}. Moreover Ly extends L. Since D(L)
is dense, the domain of Ly is dense as well. Consequently Ly generates
a Feller semigroup. If L; and Ly are two generators of Feller semigroups
which extend Lg with respective resolvent families {R;({A) : A > 0} and
{Ra(A) : A > 0}, then

sup inf {h(zo) +[g— (I —toL) h] (z)} < AoR1(Ao)g(zo)
heD(L) 2EE

< hEleL) sup {h(zo) + [g — (I —toL) h] (z)}
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Shsgi()m;gg{h zo) + [g— (I ~toL) h] ()} .

The same is true for AgRa(Xo)g(zo). Consequently Ri(Xg) = Ra(Xg),
and thus L1 = L. First we give an alternative description of the op-
erator Lg. Again the equality in (1.8) is available. The quantities in
(1.13) and (1.14) of Proposition 4 are equal. As a consequence, we may
repeat the construction in Proposition 4 for any 0 < A; < 2Xp instead
of Ag. In this way we obtain a resolvent family {R(A):0 < X < 4)¢},
for which Proposition 4 is applicable. By induction we find a resolvent
family {R(A) : A > 0} with the property

1

A )\ = f —|IT—=L1|h

R(Ng(zo)= inf =~ sup %’é&e%&fz}{ (“”0)*[9 ( X ) ](”’)}
#l'<oo #P<oo

2 = o ot e i B+ g~ (1-32) 8] @)

FCD(L) CI&’CE hel ZE‘I)U{A}
#I'<oo

From the first part of the proof of (e} of Theorem 2 we see that the

operator R (Ag) leaves the space Cy(FE) invariant. Hence, so do the
operators E(A), A > 0. Put LoR(A)g = AR(\)g — g, g € Cy(E).
First. we show that Ly is well-defined and that Lo = L, where L; =
s-limy .0 @ (aR(a) — I). Therefore we consider, for h € D(L), AR(A)h—
h = R(A}LA). Since infyep g(z) < AR{N)g < sup,cp g(z), we see that
limy oo AR(A)R = h, for h € D(L). Since D(L) is dense in Cy(F),
and since [[AR(M)|| < 1, for A > 0, we infer limy_o AR(\)g = g,
g € Cy(E). Next we prove that Ly is well-defined. Suppose that
R(Al)gl = R(Ag)gg, g1, gz € C(](E), A1, As > 0. Then

R(A2) (AR (A2) g2 — MR (M) g1 — 92+ ¢1)
=R(A2) (A2 = A B (A} g1 — g2+ g1)
=R(M)gn —R(M) g1 —R(A2)g2+ R(M2) g1 = 0.
Put g = MR(A)g2 — MR(A)g1 — (92 —g1). Then R(A\)g =

Consequently, R(A)g = 0 for all A > 0, and hence g = 0. This proves
that Ly is well-defined. Since

(8) - R()) - R(ﬁ))

12 (R0 - 2R - RE) -

a(aR(a) - Y R(8) = a (aiﬂ
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if o tends to oo, it follows that L1 R(3) = SR(8) — I. As a consequence
we see that L; extends Lg. Next suppose that g1 belongs to D(Ly).
Then
(1.23)
(A = L1y g1=(M — Lo) R(A) (\I — L1) go=(A] — L1) R(A) (M — L1) g1

Since, for g € D(L,),
R(B) (M — Ly) g = AR(B)g — lim aR(B) (aR(a) —I}g
= AR(B)g + Jim —— (aR(e)g — BR(D) g
(1.24) = AR(B)g + g — BR(B)g = (M — Lo} R(B)g.
From (1.23) and (1.24) we obtain
0= BR(8) (M — Ly) (g1 — R\ (AT - L) a1)
(1.25) =B (A — L)) R(B) (g1 — R(A) (M — Ly) )

In (1.25) we let 3 tend to oo. Since Lg is a closed linear operator, we
obtain that the function g1 — R{A\) (A — L1} g1 belongs to the domain
of Ly, and consequently ¢; is a member of D(Lg). Next we show that
the operator Ly verifies the maximum principle. Fix g € D(Lg), and let
zo € E be such that g(zp) = sup,cg g(z). Then

Log(wo) = Liglae) = lim o (aR(a)g(zo) - g(z0))

(1.26) < Jim (sup g(z) — g(mo)) <0.

In addition, we show that Lg extends L. If iy belongs to D(L), then

LoA (I = toL)ho, ) (zo) = oA ({ — toL}ho, 7o) — Ao (I — toL) holzo)
= tho(wo) — )\oho(ﬂ’ig) + th(:ﬂo) = th(mg).

Since D(L) is dense, it follows that the domain of Ly is dense as well.
Since (M — Lg) R(A) = I we see that the range of A — Lo coincides
with Cq(E). From the Lumer-Phillips theorem, we may conclude that
the operator Ly generates a Feller semigroup: see e.g. [44].

Next we prove the uniqueness. Let L; and Ly be two linear extensions
of L which generate Feller semigroups with respective resolvent families
{R1(A): A >0} and {R2(\): A > 0}. Then there exists a probability
measures pl and 7, on the Borel field of E* such that Ao R;(Ao)g(zo) =

fg(y)dp%a, g € Cyh{E), 7 =1, 2. Fix £ > 0. Then we obtain, for some
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finite subset I' = I'; of D(L),

(127) —Z+A" (g,20)

g
< ] i + — — - —
- qing Ifrzlé]i}‘{zeggl{l&}{h(wo) lg = (I = toL) Rl (2)} 4

#E <00

< I}gglzi{h(wo) + Ao R (Ao} 9(zo) — AoBa (Ao) (I — toL) h(xo)}

£
= %P1 (M) g(w0) < A" (9,m0) + 5.
By the same token we have
€ _ £
(128) =5+ A7 (g50) < DR (o) gla0) < AT (9,20) + .

Consequently, from (1.27) and (1.28) together with the equality of the
expressions in (1.6) and (1.7) we obtain

—e=A" (g, -1'0) — At (g,z0) — e < Apgfy (/\0) g(zo) — Ao B2 (Ag) g(,ﬁco)
(1.29)
<AV (g,20) — AT (g,m0) +e=-.
Since € > 0 is arbitrary we conclude R;{Ag)g{zo) = Ra(Ag)g(xs), g €
Co(F), xo € F, and hence Ri(Ag) = Ra(Ag). Thus Ly = Ls.

Let Ly be the (unique) extension of I, which generates a Feller
semigroup, and let {(2,F,P,), (X(t),t > 0), (¥, ¢t > 0),(E, &)} be the
corresponding Markov process with B [¢(X (t)] = exp (tLo) g9(z), g €
ColE), x € E, t > 0. Then the family {P, : z € E} is a solution to
the martingale problem associated to L. The proof of the uniqueness
part follows a pattern similar to the proof of the uniqueness part (e) of
Theorem 2. Let {P;(cl) = E} and {Pg} = E} be two solutions to

the martingale problem for L. Fix zg € E, g € Cy(F), and s > 0. Then,
as in the proof of the first part of (e} of Theorem 2

A™ (g, X(s),0) < A f " exp(-AEY) [g (X (e +9) | %] de
0
< AY (g, X(s),A),

for =1, 2, where

1

At (g, 20, \)= inf in max {h -i—[—(I——L)h] :c};

(9,20, A) rot f,‘é% min Imax . (wo)+|9g 3 ()
#I <00 #P<oc0
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A~ (g,z0,\)= sup inf max min {(:co)+[g—(f——L) ](m)}

rcb(L) 'I:I)CE hel’ zedU{A}
#I<o0

In the same spirit we get, for j =1, 2,
A" (g, X(s), )

(1.30) <A /0 mexp(—At)E(;‘;)(s) g (X (£)) dt
<AT(g,X(s),A).
Since, by Proposition 4 (formula (1.13} and (1.14))
AT (g,2,N) =A™ (g,z,A},g € Co(E),z € E,A >0,

we obtain, by putting s = 0, EY [g(X(®)] = EY [g(X ()], ¢ > 0,
g € Cp(E). We also obtain, Pg )_almost surely,

EQ [g(X (¢ +9)) | 5] = EY)y lo(X@)], for ¢, s 20, and g € Co(),

for 7 =1 and for j = 2. It necessarily follows that P(wl) = P(f), € E.
This proves the uniqueness of the solutions to the martingale problem
for the operator L. O

REMARK 1. For {} we may take the Skorohod space Q=D ([0, 00|, E®).
So a function w : [0, o] — E® belongs to the sample path space Q if it
possesses the following properties:
(i) w is a mapping from [0, 00} to E2 = EU{A}; w(0) € E.
(ii) w is right continuous and possesses left limits in F on the stochastic
interval [0,((w)), in the sense that limss w(s) exists in E for

s < ((w):=inf{t > 0:w(t) = A}.
Moreover, if w(s) = A and if ¢ > s, then w(t) = A.

(iii) The set E® is the one-point compactification of E, or, if E is
compact, A is an isolated point of E2 = EU {A}.

REMARK 2. The collection {F; :t > 0} is a filtration: if s < £, then
F, C F,. Every o-field F, is an appropriate completion {(extension) of
the o-field o (X(u) : u < t). The family {F; : ¢ > 0} is continuous from
the right: F; = (),..Js. Since we consider more or less the internal
history {F::¢ >0}, t > 0, we suppress the notation F, ¢ > 0, in our
symbolism of our Markov process:

{(Q,F,P,), (X(£) : £ > 0), (5 : ¢ > 0),(E, )}
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Authors often write things like {(Pm)me g (X(2) tzo}: when the other
items are clear from the context.

REMARK 3. The mappings X(t) : @ — E® are called state variables;
E is referred to as the state space (sometimes stochastic state space).
Fut
(=inf{s>0:X(s) = A}.
Then ¢ is called the life time of the process {X(t) : ¢t > 0}. The motion
{X(t) : t > 0} is P,-almost surely right continuous and possesses left
limits in & on its life time:
(i) limgy, X (s) = X(¢), (right continuity);
(it) s > ¢, X(t) = A, implies X(s) = A, (A is called the cemetery);
(iii) limgye X(s) = X(t~) € E, t < ¢, (left limits in £ on its life time).
These assertions hold P -almost surely for all x € E. The probability
P, may be defined by Pa(A) = 6., (4), where wa(s) =4, s > 0.

REMARK 4. The shift or translation operators ¥, : @ — Q, s > 0,
possess the property that X(¢) o, = X (¢t + s), Pg-almost surely, for all
x € E and for all s and ¢ > 0. This is an extremely important property.
For example f(X(t))od, = f(X{(t+3)), f € Co(F), s,t > 0. If Q is the
Skorohod space = D ([0, 00), E®), then X{)(w) = w(t) = X(t,w) =
w(t), V(w)(s) =w(s+1t), we

REMARK 5. For every z € E, the measure P is a probability measure
on ¥ with the property that P, [X(0) = z] = 1. So the process starts at
X(0) = z, Py-almost surely, at ¢ = 0. This is the normality property.

REMARK 6. The Markov property can be expressed as follows:
E, [f(X(s+t)) | ffs]
(1.31) “E, [/(X(s+1) | o(X(s))]
=Ex ) [f(X(®)],

P -almost surely for all f € Cy(F) and for all s and t > 0. Of course,
the expression E [Y l 3'"] denotes conditional expectation. The meaning
of F, is explained in Remark 2. Let Y : 2 — C be a bounded random
variable. This means that Y is measurable with respect to the field
generated by {X(u):u > 0}. The Markov property is then equivalent
to

(1.32) E; [Y o, | Fs] =Ex(y[Y],

P.-almost surely for all bounded random variables ¥ and for all s > 0.
Notice that, intuitively speaking, F, is the information from the past,
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o (X (s)) is the information at the present, and Y o ¥ is measurable
with respect to some completion of o {X ( ) :u > s}, the information
from the future. Put P(t,z, B) = P, [X(t) € B]. Then E;[f(X(t))] =
[ fw)P(t,z,dy), f € Co(E). Moreover (1.31) is equivalent to {1.32)
and to

(1.33) Es | J[ £(x(t:))

:// /H(fj(:EJ)P( tio,2;m1,d25)

forall 0 =ty <t <ty < - - <t, <coandforall fi,..., [, in Co(F).

REMARK 7. Since the paths {X(¢) : t > 0} are right continuous P-
almost surely, it can be proved that our Markov process is in fact a
strong Markov process. Let § : 2 — o0 be a stopping time meaning
* that for every ¢ > 0 the event {S < ¢} belongs to F;. This is the same
as saying that the process ¢ — 1jg<, is adapted. Let F5 be the natural
o-field associated with the stopping time 5, i.e.

Fs=[1{AeTF: An{S<t}eF}.
t>0

Define ¥5(w) by ds(w) = Jg(,y(w). Consider Fg as the information from
the past, o(X(S)) as information from the present, and

oc{X(t)es:t >0} =c{X{E+5):t>0}

as the information from the future. The strong Markov property can be
expressed as follows:

(1.34) E, [V o 95|Ts]
=Ex(g Y], P;-almost surely on the event {S < oo},

for all bounded random variables Y, for all stopping times 5, and for
all z € E. One can prove that under the ”cadlag” property events like
{X(8) € B, § < oo}, B Borel, are Fg-measurable. The passage from
(1.34) to (1.31) is easy:; put ¥ = f(X(t)) and S(w) = s, w € Q. The
other way around is much more intricate and uses the cadlag property
of the process {X(t):¢t > 0}. In this procedure the stopping time S
is approximated by a decreasing sequence of discrete stopping times
(8§, = 27[2"8] : n € N). The equality

E;[Y 0¥g,|%Fs,] = Ex(s,)[Y], P.-almost surely,
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is a consequence of (1.31) for a fixed time. Let n tend to infinity in (1)
to obtain (1.34). The “strong Markov property” can be extended to the
“strong time dependent Markov property”:

(2)

E,[Y (S+T 0 ¥s,9s) | Fs] (w)=E

™) [ = Y (ST (v') )],

P..-almost surely on the event {§ < oc}. Here Y : [0,00) x 2 = C is a
bounded random variable. The Cartesian product [0, o0} x £2 is supplied
with the product field B@F; B is the Borel field of [0, 0o} and F is (some
extension of) ¢ (X{u) : w > 0). Important stopping times are “hitting
times”, or times related to hitting times:

T:inf{s>O:X(s)eEA\E},

and

S = inf{s >0: ]: 1\ (X (u))du > 0},

where T is some open (or Borel) subset of £, This kind of stopping ‘
times have the extra advantage of being terminal stopping times, i.e.
t+So, = § Py-almost surely on the event {S > ¢}. A similar statement
holds for the hitting time T'. The time 5 is called the penetration time
of E\ X. Let p: E — {0,00) be a Borel measurable function. Stopping
times of the form

Se = inf{s >0: /Osp(X(u))du > {5}

serve as a stochastic time change, because they enjoy the equality:
S¢ + Sy o¥s, = Seiy, Pr-almost surely on the event {S¢ < oco}. As
a consequence operators of the form §(£)f(z) := E.[f(X (Se))], f a
bounded Borel function, possess the semigroup property. Also notice
that Sy = 0, provided that the function p is strictly positive.

REMARK 8. Since a Feller semigroup possesses a generator, L say,
one also says that L generates the associated strong Markov process.
For example %/_\ generates Brownian motion. This concept yields a
direct relation between certain (lower order) pseudo-differential opera-
tors and probability theory: see Jacob [26]. The order has to be less
than or equal to 2. This follows from the theory of Lévy processes and
the Lévy-Khinchin formula, which decomposes a continuous negative-
definite function into a linear term (probabilistically this corresponds to
a deterministic drift), a quadratic term (this corresponds to a diffusion: a
continuous Brownian motion-like process), and a term that corresponds
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to the jumps of the process (compound Poisson process, Lévy measure).
Quite a number of problems in classical analysis can be reformulated
in probabilistic terms. For more work on the connection between the
martingale problem and (pseudo-}differential operators, the reader may
consult e.g. papers by Hoh [23, 24], and papers by Mikulyavichyus and
Pragarauskas [33, 34]. For a connection between the martingale prob-
lem and quadratic forms, see e.g. Albeverio and Rockner [3]. For a
relationship between the maximum principle and Dirichlet operators see
Schilling [38].

For instance for certain Dirichlet boundary value problems hitting
times are appropriate; for certain initial value problems Markov process
theory is relevant. For other problems the martingale approach is more
to the point. For example there exists a one-to-one correspondence
between the following concepts:

(i) Unique (weak) solutions of stochastic differential equations in R":
(ii} Unique solutions to the corresponding martingale problem;
(iii) Markovian diffusion semigroups in R;
(iv) Feller semigroups generated by certain second order differential
operators of elliptic type.

For more details see e.g. Tkeda and Watanabe [25]. (Regular) first
order perturbations of second order elliptic differential operators can be
studied using the Cameron-Martin-Girsanov transformation. Perturba-
tions of order zero are treated via the Feynman-Kac formula.

REMARK 9. In our discussion we started with {generators of) Feller
semigroups. Another approach would be to begin with symmetric Dirich-
let forms (quadratic form theory) in L?(E,m), where m is a Radon mea-
sure on the Borel field £ of E. (By definition a Radon measure assigns
finite values to compact subsets and it is inner and outer regular.) The
reader may consult the books by Bouleau and Hirsch [6], by Fukushima,
Oshima and Takeda, [21], or by Z. Ma and M. Réckner [31]. In the
latter reference Ma and Rockner treat somewhat more general Dirichlet
forms. These Dirichlet need not be symmetric, but they obey a certain
cone type inequality:

1E(f. 9)I* < KE(f, f)E(g,9), f, geD(g).

Again one says that the Markov process is generated by (or associated
to the Dirichlet form &€ or to the corresponding closed linear operator:
E(f,g) = —{(Lf,q), f € D(L}, g € D(£). (Note that only regular
Dirichlet forms correspond to Markov processes.)



246 Jan A. Van Casteren

PROBLEM 1. (a) Is a result like Theorem 2 true if the locally com-
pact space E is replaced with a Polish space, and if Cy(E) (space of
all bounded continuous functions on E) replaces Cy(E)? Instead of the
topology of uniform convergence we consider the strict topology. This
topology is generated by seminorms of the form: f — sup, g [ul{z) f(z}],
f € Cy{E). The functions % > 0 have the property that for every a > 0
the set {u > a} is compact (or is contained in a compact) subset of .
The functions v need not be continuous. What about Markov unique-
ness? Is there a relationship with work done by Eberle [17, 18, 19]?

(b) Is it possible to rephrase Theorem 2 for reciprocal Markov processes
and diffusions? Martingales should then replaced with differences of for-
ward and backward martingales. A stochastic process (M(t):¢ > 0) on
a probability space (22, F, P} is called a backward martingale if E[M (¢) |
F*] = M(s), P-almost surely, where ¢ < s, and F° is the o-field gen-
erated by the information from the future: ¥* = ¢ (X (u) : u > s}. Of
course we assume that M (t) belongs to L' (2,7, P), ¢t > 0.
Let (2,5, P) be a probability space. An E-valued process

(X(t):0<t<1)
is called a reciprocal Markov process if for any 0 < s < ¢ < 1 and every
pair of events A € o (X(7): 7€ (5,1)), Bco(X(r):7€[0,s]Ut,1])
the equality

(1.35)
P[ANB| X(s), X(t)] =P [A| X(s}, X(t)] P [B | X(s), X(2)]

is valid. By D we denote the set
(1.36)

D={(s,z,t,B,u,z): (z,2) e ExE, 0<s<t<u<l, Beé&}.
A function P : D - [0, 00) is called a reciprocal probability distribution
or a Bernstein probability if the following conditions are satisfied:

(i) the mapping B + P (s,z,t, B, u, z) is a probability measure on &

for any (z,2) € Ex Eand forany 0 <s<t<u<1;

(ii) the function (z,z) — P (s,z,t, B,u, z) is € ® Fcal-measurable for

any 0 <s<t<u<l;
(iii) For every pair (C,D)€ EQF, (z,y) € Ex E,and forall 0 < s <
t < u < 1 the following equality is valid:

f P (s,2,u,d6,0,9) P (5,2, C, u,£)
D

:/P(Svmatadnavny)P(t:nautcavay)-
C
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Then the following theorem is valid for £ = R” (see Jamison [27}).

THEOREM 7. Let P(s,z,t,B,u,y) be a reciprocal transition prob-
ability function and let p be a probability measure on £ @ £. Then
there exists a unique probability measure P, on F with the following
properties:

(1) With respect to P, the process (X(t) : 0 <t < 1) is reciprocal;

(2) For all (A, B) € £® & the equality P, [Xo€ A, X1€B]=p (AxB) is

valid;

(3) Forevery 0 < s <t <wu <1 and for every A € € the equality

P, [X(t) e A| X(s), X(w)] = P(s,X(s),t, A,u, X (u)) s valid.

For more details see Thieullen [39] and [40].

(c) What is the equivalent of all this in the non-commutative setting?
We notice that there is a possibility to define a strict topology on a C*-
algebra. To be precise, we let A be a C*-algebra, and = : A — L (H)
be a faithful representation (obtained e.g. via a Gelfand-Naimark-Segal
construction). Define, for every compact operator T : H — H the semi-
norm pr : A — [0,00) by pr(z} = |Tn{z)||, x € A. The topology T3
induced by these seminorms may be called the strict topology.

We notice that a positive solution to Problem 1 (a) would make a
nice link with work by Dorroh and Neuberger [16] in as much as the Lie
generator will also be the generator of a Markov process.

PROBLEM 2. How useful is the martingale result on operators with

the Korovkin property? We don’t have a good example or application.
Is there a non-commutative version of the Korovkin property?

2. Feynman-Kac semigroups: 0-order regular perturbations

In the present section we will quote one central theorem from [15].
We assume that V' : E — [—00, 00| is a Kato-Feller potential function in
the following sense:

(2.1) lim sup / B (Vo(X("))dr =0

0
£
limsup [ E, (Lg(X(r))Ve(X(r}))dr =0
t0 zeE Jo
for all compact subsets K of F, We note that a Kato-Feller potential

function belongs to Ll (E,m). Furthermore we consider : a (large)
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open subset of E, with complement I'. The symbol S denotes the pen-
etration time of I":

(2.2) S = inf {s >0 /D (X () > o}

It is a blanket assumption that py(t,z,y) = po(t,y, ) (symmetry), and
that the function (¢,z,y) — po(t, z,y) is continuous on (0,00) x E x E.
In addition dz = dm(x) is a reference measure on E.

The operator — K| is supposed to generate a symmetric strong Markov
process

(3) {(Q,5,P5) ,(X(t) : £ 20), (9 : £t 20),(E,E)}.
So the law P, (X(t) € B) is given by P, (X(t)€B)= [ Dotz )dmiy).
B

DEFINITION 8. The pinned measure ,ué’f,"c on F;_ is defined as follows:

(23) nu'f],yx(A) =E, [p[)(t -5 X(S)ay)lA] ’

where A € F,, s < t. Extend this pre-measure to a genuine measure on
F;_ and notice that the process s — py(t — 5, X (s),y) is a martingale.

The measure ,uf]’f’a': lives on the event {X(0) =z, X(t—) =y}

Indeed, it follows from the Kolmogorov extension theorem on cylin-
drical measures that the measure ug’_@;’c, determined by (2.3), can be ex-
tended to the o-field F;_. Since the process s — po(t — s, X(s),y) is
a P -martingale on the interval 0 < s < ¢, it follows that the quantity
ué‘i(A) is well-defined: its value does not depend on s, as long as A
belongs to F; and s < £.

THEOREM 9.

(a) There exist a closed densely defined linear operator Ko+V extend-
ing Ko +V, which generates a positivity preserving (self-adjoint}
semigroup in L*(E, m), denoted by

{exp (—t (KO—E—V)) it > 0} .

This semigroup is given by the Feynman-Kac formula (f ¢ L*(E,

m)):
(2.4)

fexp (=t (Ko V) f] (@) = Ea [e;{p (_ | t V(X(u))du) f(X(t))] |
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(b) Every operator exp (—t {(Ko+V)) is an integral operator with a
continuous, symmetric integral kernel exp(—t{Ko+V)){z,y) given
by

exp (—t (Ko + V) (z,¥)

(2.5) =l;%1Ew [exp ( /: V(X(u))du) polt — s,X(s),y)]

(2.6) = / exp (— /O tV(X(u))du) dpgy.

(¢) The quadratic form (generalized Schrédinger form) £V associated
with the above Feynman-Kac semigroup is given by
(2.7)

£V(,0) = (VEof, VEag) + (VVif Vig) = (VV-1,V/V-g).

for f, g members of
(28) D (\/ITO) N {f € L*(E,m), fv+(g;) |f(2)|? dm(z) < oo}.

For a proof we refer the interested reader to Chapter 2 in [15].

3. Dirichlet semigroups: 0-order singular perturbations, har-
monic functions

In this section we present some results concerning Feynman-Kac semi-
groups, but with infintely high potentials in certain regions (obstacles,
potential barriers): the repulsive part of the potentials takes the value
oo in such regions.

DEFINITION 10, The Dirichlet semigroup {exp (— (KOJ}V)E) it > 0}
is defined by
(3.1)

exp (=t (Ko+V)g) f(z) = Eg [exp (— '[Ot V(X(u))du) fX(@): 5> t].

The V-harmonic extension operator H‘E/ is defined by

(3.2) HYf(z)=E, (exp (— fo i V(X(u))du) fIX(8):8 < oo).
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We repeat that as in equality (2.2) the symbol S denotes the pene-
tration time of the set I' ;== E\ ¥. We have H§+V =af e ¥ (s)ds,
where

(33) T (s)f(x) = B, [exp (— / ) V(X)) X)) S <.

THEOREM 11. The operator

(3.4) (al + Ko+V)? HEWY (af + Ko V) ™H?
extends to an orthogonal projection and Dynkin’s formula
(3.5)

(al + Kot V)™ = J* (al + (Ko +V)o) ™ T+ HEY (al + Kot+V) ™!
is valid.
At the level of integral kernels, the latter formula reads:

Newton potential = Green function + Harmonic correction. We also

have
£a+ v

(36)  D(EY) = D ((of + Ko+V)y,) ©erv R (HE™)

HEY is an orthogonal projection in D (£2+Y), endowed with the canon-
ical quadratic form €%tV corresponding to the Feynman-Kac semigroup
corresponds, and which is given by

a 1/2
e (f,9) = (Ko* £ K *) + (Vi £, V%)
ta(f.g)— (V21 V2l),
where f and g belong to D(KS/Z)DD(V_;/Q). A proof of Dynkin’s formula
can be found in Chapter 2 of [35], and the assertion about the projection
HZY is proved in detail in [46].

Put
(4)

Rt (z) = HEV 1(z) = B, [exp ( fo (a1 VX)) du) L5 < oo] .

DEFINITION 12. The set E\X has finite a4V -capacity if [ h&TY (z)dz
is finite. Note:

(3.7) /h%+v(:n)d:1: = inf {E“+V(u,u) ru €D (E“+V) , u>1r}.
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The following theorem appears in [47] as Theorem 3.1, and in [46] as
Theorem 13 on page 176.

THEOREM 13. Let {Fy(€) : £ € R} and {E(€) : £ € R} be the spec-
tral decompositions corresponding to Ko-+V and to K o+W , respectively.
Let

{(,F,P), (X(t) : £t =0),(¢h:t>0),(E, &)}

be the strong Markov process generated by —Kg. Suppose that, for
some to > 0, the function exp (—tgKp) |W — V| is bounded, or suppose

that
( / (W(X V(m(u)))duﬂ ~0.

The following assertions are equivalent:
(i) For every bounded interval A the operator Fo(A)(W — V}E1(A)
is compact;
(ii) For some t > 0 (for all t > 0} the operator
exp (—t (Ko+V)) (W — V) exp (—t (Ko+W))

is compact;
(iii) For somet > 0 (for all t > 0), the operator D(t} is compact.

(3.8) hm sup E,
0 recE

REMARK 1. If limgjo sup,eg fy lexp (—sKo) |W — V|| (z)ds = 0, then

( fﬂ LW W) - V() du)z] .

This is a consequence of the Markov property.

3.9 lim E.
(39)  limsup

REMARK 2. An equality like (3.9) can probably be used for first
order perturbations, where the Cameron-Martin formula is applicable.
In such a case we have to deal with stochastic integrals instead of the

¢
process t — /0 (W{X{n) — V(X(u)))du

REMARK 3. Theorem 13 is probably not known, even in the case
where we consider Ko = Hg = f%A. The corresponding process is
Brownian motion in this case.

REMARK 4. We introduced Brownian motion as a Markov process
with a certain transition function. It can also be introduced as a v-
dimensional Gaussian process { X {#) : t > 0} such that E [(X(t}, X (s))] =
vmin(s,t), or as a Lévy process with negative definite function { —
% |€ |2, or as a martingale with variation process ¢ — {.
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REMARK 5. In the implication (iii) = (ii} the following identity is
relevant:

(3.10)  texp (*% (KOW)) (W — V)exp (% (KU—PW))

-7 /j: m exp (i'rt (Ko%-—V)) DWW -V)
exp (—i'rt (KO'i‘I'V)) dr,

where

(3.11) DHT = /: exp (—u (Ko+V)) Texp (—(t — u) (Ko+W)) du.

The following result is applicable for

(5) M(t) = exp (— fo tV(X(u))cm)
(©) M= e (= [ VXM 15

where V' is a Kato-Feller potential, and where 5 is a terminal stopping
time, i.e. t+8o01; = S P,-almost surely on the event {S > £}. Theorem
14 proves part of Theorem 9.

The proof of the following result can be found in [46], Theorem 14,
page 181.

THEOREM 14. Let {M(t) : ¢t > 0} be a multiplicative process taking
its values in [0, 00). This means that, for every t > 0, M(t) : @ — [0, oc)
is F;-measurable and that M (s+t} = M (s)M(t)od, for all s and t > 0.
Assume

hm Mt - E)dp,ty fM t)d,u
As above, the defining property of ,LLD’,m is the equality

/ Fduk¥ = B, (Fpolt — 5, X(s),9)]

where F : 2 — R is bounded and F;-measurable (s < t). The following
assertions are valid:
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(1) The process

s— M(s [M s)d,ut s’y)

is a P,-martingale on the interval [0,1).
(2) The following equality is valid:

(3.12) E, [M()f(X ()] = f / MRS £ () dy,

where f is greater than or equal to zero and Borel measurable.
(3) The following Chapman-Kolmogorov identity is valid:

(3.13) //Mtl Yy fM tg d,ut”dzﬁ/M t +ta) duga Y.

PrOBLEM 3. Let M(t) be as in Theorem 14. Define the semigroup
exp (—tKar) by

fexp (K1) £} () = / exp (—tKn) (2,9) F W)y,

where exp (—tKu) (z,y) = [ M (t)d,uf]”yx. Suppose that the operators
exp {—tKar), t > 0, are self-adjoint. Then, formally,

] fexp (—isKns) exp (—tKas) ()] (2) F (4)dy

= [owp (isktn) [ enp (~t5 (-,y)f(y)dy] (@)

= [exp (—isK ) exp (—tKar) f] (z) = [exp (—(t + is)Kpr) f] ().

In what sense do we have convergence of lexp (—isKagexp (—tKag (-, y)]
(x) to exp isKag (x,y), if t tends to 0 downward?

REMARK 1. In relation to the previcus problem, we like to point out
that Zambrini and coworkers [52, 2, 41, 42] have kind of a transition
scheme to go from classical stochastic calculus (with non-reversible pro-
cesses) to physical real time (reversibile) quantum mechanics and vice
versa. An important tool in this connection is the so-called Noether
theorem. In fact, in Zambrini’s words, reference [52] contains the first
concrete application of this theorem. In [52] the author formulates a
theorem like Theorem 15 below, he also uses so-called ”Bernstein diffu-
sions” (see e.g. [10]) for the ”Euclidean Born interpretation” of quan-
tum mechanics. The Bernstein diffusions are related to solutions of

(% — (KU—H/)) =0, and of (% +KO—FV) 7n* = 0. Tt would be nice
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to formulate the stochastic Noether theorem (Theorem 2.4 in [52]) in
terms of the carré du champ operator and ideas from stochastic con-
trol.

In relation to the previous remark we have the following result for
generators of diffusions: see Remark 2 following Theorem 27. For the
notion of the squared gradient operator (carré du champ operateur) see
equality (5.10). The operator K acts on the first variable and so does
the squared gradient operator I';.

THEOREM 15. Let x : E x [t,u] — [0,00] be a function such that
Efft"‘ [log x (X (u},u)|],v € D(Ky) is finite. Here v > 0 is a fixed
time and {(Q,F,P),(X{t):t>0),(% :t>0),(E, &)} is the strong
Markov process generated by —Ky. Let S}, be a solution to the following
Riccati type equation. (This equation is called the Hamilton-Jacobi-
Bellman equation.) Fort < s < u and x € E the following identity is
true:

(3.14)
a5y,

1
—E(:ﬂ,s) + §F1 (Sr,Sp) (z,s) + KoSp(z,8) — V(z,8) = 0;

Se(z,u) = —log x(z,u), zeE.

Then for any real valued v € D (Ky) the following inequality is valid:
(3.15)

M, ! M,
Su(e. )< | ({510 0 0h4v) (X0, B2 e X,
and equality is attained for the “Lagrangian action” v = Sy,

By definition E.; [Y] is the expectation, conditoned at X (t) = z, of
the random variable Y which is measurable with respect to the informa-
tion from the future: i.e. with respect to o {X(s) : s > t}. The measure
PMvt ig defined in equality (3.17) below. Put 1, = exp(—Sr), where

x,t
Sy, satisfies (3.14). From (5.21) it follows that (% — (KO—E—V)) 7y = 0,

provided that Kyl is interpreted as 0, ie. [ Kofdm = 0 for all f €

D (Kp). Fix a function v: ExR — R in D (Ko — Dy), where Dy = %

is differentiation with respect to t. Let the process
{4, F,Pay), ((g0(t), ) : £ 2 0), (9, : £ 2 0}, (B x R, E® B)}

be the Markov process generated by the operator — K, + Dy, where K,
is defined by K,(f}{(z,t) = Kof(z,t) + 1 (v, f) (z,t). Here, B denotes
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the Borel field of R, and by T'y(v, f){x,¢) we mean
(3.16)

T o, £z, 0)-lim B (X (5),)=0(X (0), ) (F (X (5), )= (X (), )]

We also believe that the following version of the Cameron-Martin for-
mula is valid. For all finite n-tuples #q,...,t, in (0,c0) the identity
{3.18) is valid:

(3.17) Hfj (t; +1t) tj+t)}

=E,. [exp (; /t [y (v,0) (X(r),7)dr — Mvvt(u))

Hfj(X(tj+t)1tj+t)]

7=l

(3.18) =E,, [f[ filaw (t5 +1) .8 + t)}

=1
where the E; ;-martingale M,,;(s), s >, is given by
(3.19)
“ 5]
M,:(s) =v(X(s),s) —v(X(),1) +/ (—B_ + Ko) v(X (1), 7)dr
t

Its quadratic variation part (M, ) (s) := (My, My,) (5) is given by

(3.20) M) (s} = /1“1 v,v) (X(7),7) dr

The equality in (3.17) serves as a definition of the measure Pfg’ “(,

and the equality in (3.18) is a statement. We notice that the following
processes are P, martingales on the interval [¢,]:

(321)  exp (_% (M) (s) - Mv,t(s)) and
(3.22) exp ( (M4} (s) 5)) ((My1) (5) + My (s)) .

Proof. The proof is based on the following version of Jensen’s in-
quality and should be compared with the arguments in Zambrini [52],
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who used ideas from Fleming and Soner: see Chapter VI in [20]. The
inequality we have in mind is the following one:

(3.23) —log )3 [exp (—¢)] < BN [,

with equality only if ¢ is constant Py ;-almost surely. We apply (3.23)
for the stochastic variable ¢ = ¢, given by
(3.24)

o= [ 50000+ V] (X0 dr = M)~ ogx (X))

By Jensen’s inequality we have

1 u

B |5 M )+ [V (X)) dr = logx (X(w),)
t

(the process in (3.22) is a = Pﬂ”“—martingale)

(3.25)

B [—% (Mo (6) = M) + [ V(X)) dr — log x (X(w), u>]

(here we apply Jensen’s inequality)
. 1
—log Eft”‘ [exp (~2- (Myz) (u) + My ¢ {u)
ﬁf V(X(r),r)dr +logx (X (u),w) )]
t

{definition of the probability measure Eﬁ“’t)

= —logE,, [exp (— ftuV (X{r),7)dr +logX(X(u),U))]

(the function Sg(y,s) obeys the Hamilton-Jacobi-Bellmann equation
(3.14))

= —logE,; [exp (; fu [ (S5, S) (X(),m)dr — Mgb,t(u))

x exp (=Sg, (X(8),8) + St (X (u), )+10gx(X(u),u))]
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(the quadratic variation process (Mg, +) (s) is given by [ T'1(SL, SL}X(
7}, 7)dT)

— —tog B fexp (-3 (Ms,.) (1) — Ms, o)
(3.26)
x exp (~S1.(X(£),£) + 51, (X (), u) + log x (X (1), u))]
= Sp(z,t).

Since we have X (t) = z, P, ;-almost surely, since Sy, (X (u),u) +logx
(X (u),u) = 0, and since the process exp (—1 (M) (u) — My(u)) is a
P -martingale, we see that the expression in (3.26) is equal to Sy (z, ).
This proves the inequality part of the theorem. If v = 5, then the
Hamilton-Jacobi-Bellmann equation implies that the expression in (3.25)
equals Sy,(z,t). Here we employ again the identity

(Ms, ) (s) = ] Iy (81, 82) (X (), 7) dr.

Altogether this proves Theorem 15. ]

PrROBLEM 4. Prove Theorem 15 for viscosity solutions of the equation
(327) H (:E, 91, 82, ’U(:L‘, ')a (Fl (’U, 'U) (SC, '))1/2 ’ _KOU (3-'": )) - 0’
where the function H (z, s1, sz, v(-},p(-), M(-)) is defined by

H (z,s1,52,v(:),p(-), M("))
(3.28)

= v(s1) — v(s2) + % f32 p(s)’ds — f:Q M(s)ds — /:2 V(z, 5)ds.

81 1

Here a viscosity solution is defined as a function Sz for which

(3.29) H (230,31,82,90(30,') (T (9, 9) (z0,))/*, — Koy (=, ')) >0,
whenever ¢ belongs to D {Ky) and possesses the property that
(3.30) Si(mo,8)—@(z0,8) < Sr{z,8)—@(z,s), forall s1 <s < sy,

and for all z in a neighborhood of x5 (or for all x € E). Moreover, if
the inequality in (3.30) is reversed, then the one in (3.29) should also be
reversed.
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Formulate and prove a stochastic Noether theorem in terms of the
squared gradient operator: see Zambrini [52]. It should read something
like what follows {(xz,s) € E x [t,u], h denotes the time derivative of A).

THEOREM 16. Suppose that the functions h, S : E xR — C,
T :[0,00) — [0,00) satisfy

h{z.s) — h(z,t) — Kgﬁ(m,s) + Koh(x,t)

(3.31) = /S Ti(h, V)(z,0)do + V(z, s)T(s) - V{z, t)T(t);

- 1
Sz, s) = KoSr(z,s) + §F1 (Sr,Sp)(x,5) — V(z,9).
Then the proccess
(3832)  [Tu(S5h)+ ST+ 4] (gs,(5),5), t<s<u,

is a B, ;-martingale. Under suitable conditions on the function v : E x
[t,u] — C the process
(3.33)

[Fl (v,h) + (Kg'u + %Fl(v,fu) - V) T+ h:| (gu(s),s), t<s<u,

is a B, s-martingale as well.

REMARK 2. There is also a connection with work by Albeverio, John-
son and Ma [1], and Lim [30] about Feynman operational calculus for
Kato-Feller potentials. In her work Lim extends the Feynman opera~
tional calculus to so-called smooth Kato-Feller measures. In [28] the
authors, G. W. Johnson and M. L. Lapidus treat the Feynman Calculus
in great length.

COROLLARY 17. Let —Kj; be the generator of the semigroup
(exp (—tKjs)) defined as in Theorem 14. The following processes are
martingales:

(3.34) 7= M(r)exp (—(t — 7)Kum) (X (7),y), 0 <1 < ¢t

639 MOIKD) - FxO)+ [ " M) Ky (X () do.

COROLLARY 18. Let S be a terminal stopping time, and put
(3.36) Y={zecE P, [S=01=0}, T=FE\Z;
(3.37)

exp (—t (Kn)g) fx) = B [M(£)f(X(2)) : S > ¢;
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(3.38) HE f(z) = B, [M(S)f(X(8)) : § < o0);
(3.39) Dg(t) = exp (—tKp) — Jsexp (—t (Kar)g) Js;
t

(3.40) Dg(t)T = / exp (—u (Kar)g) Texp (—(t — u)Kar) du.

0
Here Jsf = f |E and J¢ is its adjoint. Then (singular Duhamel’s
formula}
Ds(t) — lrexp (—tKy) = J5Ds(t) (Kp) g JsHY
(3.41)

= 1sHY exp (—tKy) — Jhexp (=t (Kpr)g) JeHY + JEDs() HY K.

Khas’minskii’s lemma, is available for multiplicative processes.

THEOREM 19. (Khas’minskii’s Lemma) Let W : E — [0,00] be a
Borel measurable function. Put v = lim, g sup,cg Ey [f(f W(X(s))ds],
and suppose v < 1. The following assertions are true:

(1) v = limg—o0 SUPc g (af + Ko) ' W(z).
(2) Choose ty > 0 in such a way that

ty
a:=supE, [ W(X(s))ds] < 1.
rek 0

Then
sup E; [eXp (foto W(X(s))ds)] <L

reFR T l-a

1 1\ Mo
(3) Letty and o be asin {2). Put M = T o and ¢’ = (—) :

l—a
Then, forx € F andt >0,

E. [exp (/t W(X(s))ds)] < M exp(bt).
0

(4) Let {M(t) : t > O} be a multiplicative functional attaining values
in [0,00]. Suppose that

inf infnsup P, | sup M{s) > < 1.

n=>0 t>0”yeg Y [OSsrs)t () 2 TI]

Then there exist constants M and b such that
E.[M®)]<Me", z€E, t>0.
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The proof of (4) can be based on stopping times of the form
T: =inf{t> 0: sup M(s) > ef}.
0<s<t
Then TE -+ T,? o) 19T£ = Tg_H?.

4. Sets of finite capacity, wave operators, and related results

In the present section we collect without proof some of the results
obtained in [15], where the proofs can be found as well. The operator
J = Jg denoctes the restriction operator: Jf = f |x. Its adjoint J*
extends a function f, defined on ¥ with 0 on E'\ L.

TaEOREM 20. If [ A% (2)%dm(z) < oo for some o > 0, then the
semigroup difference

(7)  Ds(t) :=exp (-t (Ko+V)) — T exp (-t (Ko+V)g) J t>0,
consists of Hilbert-Schmidt operators. Here Jf = f [x.

Motivation. By Weyl's theorem we get: if Ds(t) is Hilbert-Schmidt,
then
Tess (KO+V) = Tess ((K0+V)z) .

THEOREM 21. Iffh%+v(a;)1/2dm(x) < oo for some a > 0, then the
operators Dy (t), t > 0, are trace (i.e. in the trace class).
Motivation. If Dx(t) is trace, then
Tac (Kg—i—V) = G ((KO—PV)E) , and the wave operators
4 =s- Jlim exp (+it (Ko+V)) J* exp (Fit (Ko+V)y,)
exist and are unitary from P, (Kg—i—V)E LA(Z,m) onto P, (Ko+V) L*

(E,m). In the proof of Theorem 21 the following result on trace opera-
tors may be used: see Demuth, Stollmann, Stolz, Van Casteren [13].

LEMMA 22, Let K and K, be integral operators with kernels ki (z, y)
and ko(z,y) respectively. Suppose that the integral

/dz‘/ffkg(s:,zﬂgdzf|k1(z,:z:)|2dm is finite.

Then Ks o K is a trace operator and its trace norm is dominated by
the latter integral.
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A formal, but not necessarily rigorous, proof of Lemma 22 reads as
follows: Let U be partial isometry for which |Ky o0 Ki| = UKz 0 Kj.
Then, loosely speaking,

1520 Kilyeo = [ do [ dz(Uka(e, ) @)1 2)
(4.1) :fdz]dm [Uka(-, 2)] (x)k1 (2, ).

The expression in 4.1 is less than or equal to the integral in Lemma 22.
Put

(4.2} D(t) = exp (-t (KO—FV)) —exp (—t (Ko+W))
and let D(t,z,y) be iis integral kernel. Put

i
= | ) - vc()) du
and V, = (1 — )V + sW.
Inequality (4.3) is used in the proof of Theorem 24.

LEMMA 23. The following identity and inequality are true:

D(t,z,y) =[A(t)’/0 dsexp( / V(X du) d#om:

(4.3)

|D(t,z,y)| < ( / A(t)Qd#B’fi)m
( J([ s (- [ m(X(u))du))Zdn&,i)

1/2

THEOREM 24.
(a) If [ dzE, [A(t)?] < oo, then D(t) is Hilbert-Schmidt.
b) If [ /E. [A(t)?]dz < oo, then D(f) is a trace operator.

REMARK. The latter result is probably also true if A(t) is of the
form:

(4.4) A(t)z—/ a(b(s).db s)_f div(a )ds—/ Vib(u))du
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corresponding to a particle under the influence of a magnetic field with
vector potential ¢ with Hamiltonian:

(8) H{a, V) — % (=¥ — ) + V.

So exp ~tH(a,V))—exp tH(0,0)) is a trace operator if [dzn/E[A(t)]

is finite.

The proof of the following theorem can be found in [12}, and also in
[13].

THEOREM 25 Suppose that the unperturbed semigroup { exp (—tKp) :
t > 0} is L'-L*-smoothing. Then the following assertions hold true.

(a) Suppose W — V belongs to L'(E, m). Then the wave operators
(9) Q4 = s lim exp (Fis (Ko+V)) exp (Tis (Ko+W))

exist on the range of Py (Ko+W) and they are complete.
(b) W —V € LY(E,m) does not imply that D(t) is a trace operator.
¢) Suppose that the function h%"" belongs to L'(E, m). Then the
PP T
wave operators

(10) Qs 4 =5 31_111;0 exp (j:z's (K0+V)Z) Js exp (:FiS (KO+V))

exist and are complete. The operator Js, restricts a function to

.

The proof is similar to the previous one. It uses a singular version of
Duhamel’s formula: see Corollary 18.

A proof of the results in (1) through (8) can be found in [15]. Throughout
it is assumed that the unperturbed semigroup {exp{—tKy):t > 0} is
L!-L*®-smoothing.
SUMMARY.
1. exp (—£Ky) |W — V| € LY2(E,m) implies: D(t), t > 0, is a trace
operator;
2. W -V € L*E,m) implies: D(t), t > 0, is a Hilbert-Schmidt
operator;
3. W —V € LY(E,m) implies that the wave operators exist and are
complete;
4. h%ﬂf € LV2(E, m) implies: Dx(t), t > 0, is a trace operator;
5. h&TY € L%*(E,m) implies: Ds(t), t > 0, is a Hilbert-Schmids
operator;
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6. h“E"'V € LY{E,m) implies that the wave operators exist and are
complete;

7. W =V € Co{E) implies: D(¢), t > 0, is compact;

h&tY € Cy(E) implies Dy (t), t > 0, is compact;

9. In 3, 4 and 6 {(extensions) of the classical Pearson estimates are
available. We owe this result to Demuth and Eder [12].

®

PROBLEM 5. What happens to the results in the above summary
if the additive functional f; V(X (u))du is replaced with more general
additive processes, like stochastic integrals? The general result on the
existence of Feynman-Kac semigroups can be formulated and proved for
a Kato type class of additive processes. This result was obtained by L.
Smits (Antwerp). The compactness properties for these more general
processes are not yet investigated in its full generality.

PROBLEM 6. What happens to the compactness results, if the Dirich-
let type boundary condition is replaced with a Neumann type boundary
condition?

Next we consider self-adjoint operators H; = Hj > —w;I, where w; >
—00, (Hamiltonians) in the respective Hilbert space H;, j = 0, 1. Let
V;(t} = exp(—tHj), t = 0, be the strongly continuous semigroup gen-
erated by H;, 7 = 0, 1. Let J : H; — Mgy be a continuous linear
operator. It is considercd as an identification operator. Furthermore,
let ¥: R — C and ® : R — R be Borel measurable functions with
the following properties (the operators ® (Kg), ¥ (Ky), and ¥ (H;) are
defined via spectral theory and symbolic calculus):

1. The operators ¥ (H;) : H; — H;, j = 0, 1, are continuous, and
v (Hy) J{f;c is dense in S}{féc.

2. There exists an admissible function o : R — R such that o(®(H;))
=Hj,j=0,1.

3. The operator ¥ (Kp) (@ (Kp) J — J® (H1)) W (Hy) is of trace class.

4. The operator (¥ (Ko) J — JU (H1)) ¥ (H}) is compact.

Here a real-valued function « is said to be admissible if there exists a
sequence of open, mutually disjoint, intervals (I, : n € N) in R such
that

1. the function « is continuously differentiable on R;

2. a{z) >0,z € R,

3. on each closed sub-interval of |
variation.

=9}

> 1 I, the function ¢ is of bounded
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Let E,(-} be the spectral decomposition of the operator H;. A vector
g belongs to H71_ if the measure B — (E1{B)g,g) is absolutely con-
tinuous with respect to the Lebesgue measure. In 3 we may take Hy =
Hy, = L2 (E,m), J =1, ¥(X) = e &{A) = A (and hence a()) = A),
Ky = Ko—i—V, H = Ko-I-W In 4 we may take g‘fo = L? (E,m),
Hy = L*(E,m), Jf = f restricted to £, T(A) = ®(A) = a(A) = A,
Hpy = exp (—to (KD-FV)E), Hy = exp (—to (Ko+V)). In 6 we may take
Ho = L2 (S, m), Hy = L2(E,m), Jf = f restricted to I, U(X) = e,
®(\) = A (and hence a()) = A), Hy = (Ko+V), H1 = Ko+ W.

In [12] the authors prove the following thecrem.

THEOREM 26. Let 8 : R — R be any admissible function. Let g

belong to J{féc. The following Pearson estimate is true:

2
(4.5) H(Qi (8 (Ho),J, 8 (Hh)) — J) ¥ (Hh)” g”i}fn

<(167 |9 (Ho) J (1)l sot, 56,
¥ (Ho) (® (Ho) J — J® (H1)) ¥ (H1)l| trace(at,.60)

N (Ho) T = T (H) ¥ (E g 56 )

Lm(R)) '

Here By, (B) = E1 (@ '(B)) denotes the spectral decomposition
of ¢ (Hl)

o (ngn%ﬁ +| 55 (Boanyt-e 00

REMARK. If in (4.5) we set ¥ = 1, and ®(A) = A, we get
(45) Q2 (B(Ho),J B (H)) — D) gllsg,
<167 || || a9y 10 — TH1llrace(6 96)
d
x (llgu‘.’z}{l + Hd)\ <E®(H1}(_Oos/\]gs g> ) 3
L>(R)
which is slightly worse than the classical Pearson estimate:
(4.5")

16% (2 (B (Ho) . J, B (H1)) — J) gll5,
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d
IR

S“JHB(SF{I,%) ”HUJ—JHllltrace(ﬂﬁ.ﬂ{g) ) E‘I’(HJ)(—OO1 /\]g: g)

L=(R)

5. Some (abstract) problems related to Neumann semigroups
This section is motivated by the following observation. A general
motivation is the following one. Let
{(Q,F,P.), (X(2),t 2 0),(9, : £ = 0), (R¥, B)}

be the Markov process of -dimensional Brownian motion. Consider a
Neumann initial value problem on an open domain ¥ in R”. This means
find a solution to the following Cauchy problem:

7] 1
(5.1} au(:c,t)—EAu(x,t) on X%,

where its normal derivative Dyu(z,t) = 0, € 9%, Assume u(z,0) =
f{z), x € £. Find a sequence of multiplicative processes M, (¢) such
that

u(z,t) = lim B, (M, (6)f (X))

If we consider Dirichlet semigroups, then such multiplicative functionals
can be found. For instance, the semigroup in (3.1) can be written as

(52) e (~t(KebV),) flz) = lim B, [Ma(0F (X)),

t t
where M, {t) = exp (—n/ Igys (X(s)) ds) exp (—/ V(X(s))ds) )
0 0
We extend this kind of problem to a general domain in a locally compact
space. Let v : ' — {0, 00) be a function in D{Kj) with e~ € D(Ky) as
well. We suppose that Kyl = 0, i.e. [ Kof(z)dz =0, for f € D (Kp),
of € LY{E,m). Put
’ t
(5:3)  My(t) = v(X(1) ~o(X(O) + | Koo(X(s))ds
0
t
(:4) () (1) = M, 3 (€)= [ T4 (0,0) (X(5)ds
1
Zv(t) = M—v(t) - § (Mv> (t)

(5.5) — o(X(0)) — v(X (8)) + fo & X6D (16, ()] (X (s))ds:
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(5.6)
T4(0f(a) = B [exp (2,00~ [ VX(3) x)]

(5.7) _E, [exp (u(X(0)) — o(X ()

exp (/ﬂ e’ () (K, (e™)] (X(s))ds)
(58) o (- [ vixenas) rxw)
(5.9) = lexp (—tK,) f]{z), where

(11)  Kof =Ko (e7°f) + (V — Ko () f.

In particular K1 = V. Here T'1(f, g} is the carré du champ operator,
introduced by Roth [37], but popularized by Bakry (see e.g. [4]):
(5.10)
L1

Ii(f,9)z) = lim ~E, [(F(X(s)) — FIX(0)) (9(X(s)) — g(X(O)))],
and (M,) = (M,,M,) is the variation process corresponding to the
martingale M,. The family {7, (¢) : t > 0} is a strongly continuous semi-
group in L(E, m). Put u(t,z) = T,(¢) f(z). Then u(0,z) = f(z) and

Ju

E = —K(]u —Vu-— Fl(v,u).

So the expression f — [y(u, f) is sort of a drift in gradient form. The
corresponding quadratic form is given by

(5.11) £J(f.9)
= /ul"l(f, g){(x)dx + /(21}(:}:) + 1) Ko f (z)g(x)dx
+ [ Ve
Notice the identity Ko{fg) +T1(f,9) = (Kof)g + f(Kpg). Put

Py.o(4) = E, [exp (v(X (0)) — v(X (1))

exp ([ X0 [ ()] (6

(]

(5.12) « exp <— /0 t V(X(s))d.s) 1A],
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where A belongs to F;.

In case Ky is —%A, we have

T'v(f,9) =V Vg,

and
M,(t) = / Vu(X(s5))dX(s)

(It6 integral), where X is Brownian motion. In addition,
(5.13)
E.[F(Y(s):0<s <t)exp(Z,(t))] = Ee [F (X(s) : 0< s < t)j,

where Y (s ) X(s)+ f; Vu(X(0))do. This is a version of the Girsanov
transformation. For an up- to—date account of Girsanov transformations,
the reader is referred to Ustiinel and Zakai [43]. We want to take (sin-
gular) limits in the expressions for T,(t) and &}, for v tending to 1p\x,
0 < & < 00. For a < oo, the quadratic form converges to

(5.14) €Y.(f,9) =—a /E T D@+ 20 /E  Kof @wda

+ [ Kof@gla)da + V@)@

So that, if fE\E (2K, f(z)g(z) —T1(f,7} (z)) dz = 0, then
(5.15)

e n(f0) = lim £,(0) = [ Kof@g(o)do + [ Vio)f@hale)dn

Here 82 ~ should stand for Neumann quadratic form. In the presence
of the carré du champ operator we may define a distance on E' x I:

d(z,y) = sup {|#(y) — w()| : T1(, ) <1}

The local time {(occupation) the process X (up to time t) spends on the
(boundary of the) complement of £ is then the bounded variation part
of the process d (X (t), E '\ ). Suitable logarithmic Sobolev inequalities
imply d(z,y) < co: see e.g. Bakry [4], Théoreme 3.2, page 39. A proof
of the following result may be based on § 3 of Bakry (4] in combination
with the proof of Lemma 3.2.1 in Davies [11], p. 83. A detailed proof can
be found in [15] Chapter 1, §D. Another somewhat less general result,
but with a simple proof, is to be found in Léandre [29].

THEOREM 27. Suppose that there exists a continuous function m :
(0,00) — (0,00) with the property that for every 1 < u < oc the
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following logarithmic Sobolev inequality is true:

(5.16) By(f) < uéa(f) + m() |13
for all f >0, f € A. Let c(u) > 0 be a function in L'([1, 0c)) with the
property that {° ¢(u)du = 1. The quantity m.(t) is defined by

* m{dte(u)(u — 1))
02

du.

(5.17) Te(t) = fl

(1) Lett > 0 be such that the corresponding quantity m.(t) is finite.
Then exp (—tKgy) maps L'(E,m) to L®(E,m) and

ffexp (—tKo){|oo,1 < exp (me(2)) .-

- —lfoo() 1 _2)d
n—nc—21 clu) [ u pv u

and suppose that n is finite. Let ¢ be a function in A with the
property that I'1 (v,v) < 1. Suppose that m.(t/2) is finite. Then

g — (@)
2t(1 +n) )

(2) Put

(5.18-) exp (—tKo) (z,y) < exp (m.(t/2)) exp (

The quantities E,(f) (“entropy”) and E,(f) (“energy”™), 1 < p < oo,
f > 0, are defined via the following formulae:

(5.19) By(1) = [ 5P o (%)dm

(5.20) Ex(f) = (Kof, f71), fe D(Ky).

For p = 2 these expressions also make sense for complex-valued func-
tions f € D (Ky).

REMARK 1. Let c{u) be as in the theorem and suppose that [ ¢(u)du
= 1/2. Define the function c¢; (v), v > 1, by

{cl(v):c(vil> (v—11)2’ if1<v<2;

c1{v) = e(v), ifv>2

Then the hypotheses and conclusions of Theorem 27 remain valid with
¢ (u) instead of c(u).
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REMARK 2. The operator Ky generates a diffusion in the following
sense: for every C®-function ® : R” — R, with ®(0,...,0) = 0, the
following identity is valid:

(5.21)
Ko(@(fs,. 0. 5o))
—Za% (fro-- s J) Kofs = Z 8%% (Fi,-- s ) Da(F5, fi)

for all functions fi,...,f, in a I‘lCh enough algebra of functions A,
contained in the domain of the generator Ky, as described in Remark 3.

REMARK 3. The algebra A in Theorem 27 has to be “large” enough.
To be specific, it is supposed to possess the following properties: It is
dense in LP{E,m) for all 1 < p < oc and it is a core for Ky consid-
ered as an operator in L2(E,m). In addition, it is assumed that A is
stable under composition with C°°-functions of several variables, that
vanish at the origin. Moreover, in order to obtain some nice results a
rather technical condition is required: whenever (f, :n € N) is a se-
quence in A that converges to f with respect to the graph norm of Kj
(in L?(E,m)) and whenever ® : R — R is a C*°-function, vanishing
at 0, with bounded derivatives of all orders (including the order 0),
then one may extract a subsequence (@ (f,,,) : k € IN) that converges to
®(f) in L'(E, m), whereas the sequence (Ky® (f..,) : k € N) converges
in LY(E,m) to Ko®(f). Notice that all functions of the form e¥ f, o,
f € A, belong to A. This fact was used in the proof of Theorem 27.
Also notice that the required properties of A depend on the generator
Ky. In fact we will assume that the algebra A is also large enough for
all operators of the form f— ¢ %Ky (¢” f), where ¢ belongs to A.

Roughly speaking the problem can be described as follows:

PrROBLEM 7. What relations, if any, do exist between the following
concepts:

1. singular limit of quadratic form;

. singular limit of Feynman-Kac semigroup;
local time spent by the process X in B\ I;
Girsanov transformation (SDE);

reflected Markov process?

SN

PrOBLEM 8. A related, not completely understood problem, is to
formulate and prove the precise correspondence between convergence of
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semigroups and of the associated quadratic forms. One ought to consider
I-convergence of quadratic forms. For the latter see e.g. Dal Maso [32].

PrROBLEM 9. If possible, incorpurate Neumann scattering in our
discussion. '

PROBLEM 10. Suppose the sequence {v, : n € N} converges to al g\x,
in a reasonable way (a = %, or, more generally, oo > a > 0). Does it
follow that the sequence (P,,, ;) converges or is tight?

Instead of a genuine drift we might also consider an imaginary drift
term:
(5.22) %E —Kou + i(Kov)u — Vu — il (v,u), u(0,2) = f(z).

A solution to equation (5.22) is given by the Feynman-Kac formula:
ut,z) = B [exp (A(2)) f(X(t))), where

A() = —in(X(t)) + (X (0)) +% /0 Ty (v, ) (X(s))ds.

ProBLEM 11. What happens to this if we take singular limits, i.e. if
we let v tend to alpyy, 0 < a < o0?

PROBLEM 12. Let h‘;}f{ be an ¢+ V-harmonic function with “normal
derivatives” equal to 1. Is the following conjecture true?

CONJECTURE 28.
(a) If A% belongs to L*(E,m), then Dgn(t), t > 0, are Hilbert-
Schmidt operators.

1/2
{(b) 1f (h“+v> belongs to L'{E, m), then Dy, n(t), t > 0, are trace

class operators.

There exist papers related to the problems which we presented above.
There is one by Williams et Zheng [50], where reflected Brownian motion
is constructed as a limit in law of processes, with a strong drift close to
the boundary. Another related paper is (36] by Pardoux and Williams.
An older paper is one on one-dimensional stochastic differential equa-
tions involving local times by J.-F. Le Gall [22]: see the remark on page
72/73.

CONCLUDING REMARKS. In this paper we proved some theorems
about the close connection that exists between probability theory and
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analysis. We mentioned some {open) problems in connection with Neu-
mann type semigroups. We hope that the readers are inspired by some of
the problems and results which are presented. It presents some rather
general techniques (Markov processes, Feynman-Kac formula, martin-
gale theory, squared gradient operator, classical harmonic analysis) to
prove results in operator theory: unique Markov extension, some results
in connection with scattering and spectral theory, a result on heat ker-
nel estimate, compactness properties of differences of self-adjoint semi-
groups.
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