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Abstract
We discuss multiple change-point estimation as edge detection in piecewise smooth functions with finitely

many jump discontinuities. In this paper we propose change-point estimators using concentration kernels with
Fourier coefficients. The change-points can be located via the signal based on Fourier transformation system.
This method yields location and amplitude of the change-points with refinement via concentration kernels. We
prove that, in an appropriate asymptotic framework, this method provides consistent estimators of change-points
with an almost optimal rate. In a simulation study the proposed change-point estimators are compared and
discussed. Applications of the proposed methods are provided with Nile flow data and daily won-dollar exchange
rate data.

Keywords: change-point model, concentration kernel, edge detection, Fourier series, piecewise
smoothness, sample Fourier coefficients, spectral expansion

1. Introduction

We are concerned with the change-point problem as discontinuity detection or jump detection. If
one acquires a signal from a piece of equipment and its changes are signaled by discontinuities, it is
important to locate change-points in the signal. Not only the location but also the amplitude of jump
discontinuities of piecewise smooth data is of interest for many scientific applications, for example,
functional magnetic resonance imaging (fMRI) segmentation. We are interested in detecting change-
points in piecewise smooth functions realized by spectral representation. We discuss a framework
for discovering change-points in piecewise smooth functions with finitely many jump discontinuities.
Fields of application include econometrics, biostatistics, and signal processing.
Consider observations Y1, . . . ,Yn with finite fourth moment and obeying the model

Yi = f (xi) + εi, i = 1, . . . , n, (1.1)

where xi = i/n, i = 1, . . . , n. The errors ε1, . . . , εn are independent and each distributed symmetric
continuous distribution with mean 0 and variance σ2. For example, N(0, σ2). The function f is
continuous on (0, 1) except at some unknown change-points or discontinuity points τ1, . . . , τK ∈ (0, 1),
at which it has left and right limits. For definiteness, we suppose that τl is an event time, i.e., τl = xi
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for some i. If f is assumed to be constant except at the change-points, then the model (1.1) reduces
to the mean shift model. If f is assumed to be linear with discontinuity at the change-points, then the
model (1.1) reduces to the piecewise linear model.

Considerable attention has also been devoted to testing the hypothesis of continuity against the
alternative of one or more change-points. For dependent data Kim and Hart (1998) proposed a test
for change using sample Fourier coefficients. When the null hypothesis of no change is rejected, then
estimating the change-point(s) is of interest.

Nonparametric change-point estimation research has been done since precise knowledge of the
discontinuous locations is essential for underlying functions. McDonald and Owen (1986) and Hall
and Titterington (1992) investigated change-point estimation based on three smoothed estimates of the
function at each point. Müller (1992) proposed estimators for the location and size of a discontinuity in
a smooth regression model, including the case of discontinuities in derivatives. Wang (1995) proposed
to detect jumps and sharp cusps in a function using wavelet transformation. Loader (1996) suggested a
change-point estimator based on one-sided local polynomials. Kim and Hart (2011) used local Fourier
coefficients for one change-point detection. Change-point algorithms either estimate all change-points
concurrently or hierarchically. Concurrent methods generally optimize a single objective function.

For example, given that there are k change-points, Hawkins (2001) estimated change-point loca-
tions by maximizing a likelihood function. Lavielle and Teyssière (2006) accomplished the same task
by minimizing a loss function. Guralnik and Srivastava (1999) used sequential methods to generally
estimate change-points one at a time.

The issue of edge or jump detection with Fourier series was treated in some literature. Kvernadze
(1998) identified the jumps of a function with generalized bounded variation. Gelb and Tadmor (1999,
2000, 2002) discussed a general framework for recovering edges in piecewise smooth functions with
finitely many jump discontinuities. Engelberg (2008) discussed techniques for using a function’s
Fourier coefficients to determine the locations and sizes of the jump discontinuities of the function
since the existence of the discontinuity is indeed encoded in the coefficients. From operational cal-
culus Fleiss et al. (2010) proposed a new approach for change-point detection based on algebraic
theory.

Our main justification for considering concentration kernels and Hilbert transformation is that
Fourier series methods have played a fundamental role in functional approach in statistics. The distri-
bution of change-points is empirically determined, and its theoretical properties are examined as well.
Our goal is to detect multiple change-points as discontinuity points without imposing any parametric
structure. Virtually any salient measure at each point would ensure detection of each change-point.

The proposed method can detect any change including discontinuities, and functional changes
within an independent or dependent error sequence. Estimation is performed in a manner that simul-
taneously identifies both the number and locations of change-points even though there needs to be
some cutoff values.

The rest of the paper is organized as follows. In Section 2, the Hilbert transformation and Fourier
series are defined and their properties are investigated, and consistency of the resulting change-point
estimator is established. Proofs of all results are given in Section 3. More precisely, we provide rates of
convergence for the change-point estimators and show their almost optimal rates of convergence with
the underlying discontinuous functions. A simulation study illustrating good finite sample properties
of the new procedure is summarized in Section 4. In Section 5 two examples with Nile River data and
won-dollar exchange rate data are given as applications. Concluding remarks are made in Section 6.
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2. Change-point estimators based on Fourier series

A function is called piecewise continuous if it has only a finite number of discontinuities in any in-
terval, and its left and right limits exist at each discontinuity point. A function is called piecewise
differentiable if the function and its derivatives are both piecewise continuous. Piecewise differen-
tiable functions are composed of differentiable functions that have been pasted together like constant
values and waves.

We consider the problem of detecting change-points in a function. We use techniques for using a
function’s Fourier coefficients to determine the locations and size of the jump discontinuities of the
function. Our approach is based on localization using appropriate concentration kernels and separation
of scales by nonlinear enhancement using Fourier projection. Tolstov (1962) provides theory about
Fourier series and Fourier coefficients.

We assume that the underlying function f has the following Fourier series representation based on
the orthogonal system {b j(x) : j = 0, 1, . . . , },

f (x) = φ0 +

∞∑
j=1

φ jb j(x), x ∈ (0, 1), (2.1)

where φ j =
∫ 1

0 f (x)b j(x)dx, j = 0, 1, . . . ,, are the Fourier coefficients of f .
Consider the trigonometric bases {b j(x) =

√
2 cos π jx}, The sample Fourier coefficients are de-

fined by,

φ̂ j =
1
n

n∑
i=1

Yi
√

2 cos π jxi, j = 0, 1, . . . , n − 1.

Let’s consider the convergence of the Fourier series. Tolstov (1962) provides a theory about
Fourier series. In many cases, it is possible to reconstruct a function from its Fourier coefficients.
Consider a piecewise differentiable periodic function, f (x). At discontinuity points, the convergence
is to the mean of values to which the function tends from the left and the right of the discontinuity.
Therefore, the convergence of the Fourier series to the function is pointwise whenever the function is
continuous and is to the average values of the function at the jumps in the function’s value.

A little change in the values of a function even on a small interval can change its Fourier coeffi-
cients considerably. However, an absolutely integrable function f (x) has a right-hand and a left-hand
derivative in a neighborhood of x, then, its Fourier series remains convergent no matter what the value
of f (x). This is known as the localization principle of the Fourier series.
For square integrable functions Parseval’s equation states that∑

j

φ̂2
j =

∫ 1

0
| f (t)|2dt.

It means that Fourier coefficients are square summable if a function is square integrable. Suppose that
the Fourier coefficients of f (t) are absolutely summable∑

j

φ̂2
j < ∞,

then, it establishes the uniform convergence of the Fourier series.
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At ti = i/n, 1 ≤ i ≤ n. We define the sample Fourier coefficients as

φ̂ j =
1
n

∑
1≤i≤n

Yi
√

2 cos π jti, 0 ≤ j ≤ n − 1.

The Fourier series estimator is defined as

f̂J(x) = φ̂0 +

J∑
j=1

φ̂ j
√

2 cos π jx, (2.2)

where J is the number of Fourier coefficients. At the change-point τ, the change size (or amplitude)
is measured by

∆ = ∆τ = f (τ+) − f (τ−).

We need to split a piecewise differentiable function into its continuous and discontinuous parts.
One way to perform this decomposition is the followings. Suppose that f (t) has m jumps at the
locations τ1, . . . , τm with the heights h1, . . . , hm, respectively. It can be expressed with

w(t) = f (t) −
m∑

i=1

hiK(t − τi), (2.3)

where K is the kernel function and τi is change-point. Here, w(t) is continuous and piecewise differ-
entiable with no jumps. Then, we have

f (t) = w(t) +

m∑
i=1

hiK(t − τi) (2.4)

where w(t) is continuous and piecewise differentiable. The sum
∑m

i=1 hik(t − τi) is discontinuous and
piecewise differentiable. By the linearity of the Fourier coefficients, the Fourier coefficients of f (t),
denoted by φ j, are

φ j = c j + d j. (2.5)

The Fourier coefficients of w(t), which is denoted by c j are absolutely summable.
Using the linearity of the Fourier coefficients, the Fourier coefficients of the sum, denoted by d j

are

d j =

{ ∑m
u=1 huψ j, at τi

0, otherwise (2.6)

where

ψ j =

∫
K(t − τi)

√
2 cos π jtdt. (2.7)

And its estimator is

ψ̂ j =
1
n

n∑
i=1

K(t − τi)
√

2 cos π jxi,
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and these coefficients are not summable.
The piecewise smooth function f can be recovered from its spectral coefficients and retain the

spectral accuracy. Edges or discontinuity points are separated by pieces of smoothness. For piecewise
differentiable functions the convergence of the Fourier series to the function is pointwise wherever the
function is continuous and is to the average value of the function at the jumps in the function’s value.

In order to determine where the edges of the data are, we use the Hilbert transform of the Fourier
coefficients. Because it changes the Fourier coefficients as little as possible, but causes the partial
sums of the Fourier series of a discontinuous function to grow at the discontinuities but not elsewhere.

At the edges in piecewise smooth functions with finitely many jump discontinuities, where

[ f ](x) ≡ f (x+) − f (x−) , 0. (2.8)

Consider a concentration kernel Kδ that is properly scaled and admissible. It recovers both the loca-
tions and the amplitudes of the jumps (Gelb and Tadmor, 1999). If a discontinuity is characterized by
a “phenomenon”, the existence of the discontinuity is indeed encoded in the coefficients. The question
is how to effectively decode the discontinuity. To concentrate the function about the discontinuity, a
different spectral representation can be used.

In practice one encounters the function f (x) with finitely many jump discontinuities and the dif-
ferential of f (x) on each side of the discontinuity to have bounded variation. Such kernels are charac-
terized by

Kδ ∗ f (x)→ [ f ](x) as δ→ 0. (2.9)

Thus, the support of Kδ ∗ f (x) tends to concentrate near the edges of f (x). Also∫
tKδ(t)d j =

{ ∑m
u=1 hu

∑
l ψ̂l cos πlx,

0. (2.10)

The derivatives provide information about discontinuities and smoothness. From equation (2.1), con-
sider a derivative such as

f ′(x) = −
√

2π
∞∑
j=1

jφ j sin π jx (2.11)

= −
√

2π
∞∑
j=1

g( j)φ j sin π jx,

where g(·) is the admissible concentration factor.
To detect such edges, consider concentration kernels Kδ(·), depending on the small scale δ such as

Kδ(·) ∗ f (x) = [ f ](x) + O(δ). (2.12)

Thus, Kδ tends to concentrate near the singular support of f . It is shown that the concentration kernel
is properly scaled and admissible to recover both the locations and the amplitudes of the jumps.

A real function f (t) and its Hilbert transform H[ f (t)] are related to each other in such a way that
they create a so-called strong analytic signal together. The strong analytic signal can be written with
an amplitude and a phase where the derivative of the phase can be identified as the instantaneous
frequency. It is not hard to see that a function and its Hilbert transform are also orthogonal. This
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orthogonality is not always realized in applications because of truncations in numerical calculations.
However, a function and its Hilbert transform have the same energy and therefore the energy can be
used to measure the calculation accuracy of the approximated Hilbert transform.

If we create a Fourier series of a function f (t) and change the sine functions to cosine functions
and vice versa, we get the Hilbert transform of f (t). We try to suggest concentration kernels to detect
edges satisfying (2.12). The key to locating the discontinuities lies in the relationship between the
conjugate Fourier partial sums and the jump discontinuities.
Given first n Fourier modes, the concentration kernel is written as

K(t) = −

n∑
j=1

g
( j
n

) √
2 sin π jt. (2.13)

Here, g(ξ) is the concentration factor satisfying

g(ξ)
ξ
∈ C2[0, 1],

where C2 is the class of twice differentiable and continuous functions. This admissibility condition is
for odd concentration kernels. If the concentration factor g(ξ) is normalized so that∫ 1

0

g(ξ)
ξ

dξ = 1. (2.14)

3. Asymptotic theory for the proposed change-point estimator

In the context of change-point estimation, it is well known that the points around a true change-
point cannot be distinguished asymptotically with a fixed change magnitude. For example, in the
least-squares fitting, the total variation with perfect segmentation is asymptotically equivalent to that
with an estimate of change-point in a neighborhood of the true change-point. The proposed method
has nonlinear enhancement that is easily implemented to pinpoint finitely many change-points in
piecewise smooth f ’s.

Let Gn(M) = {τ̂1, . . . , τ̂M} denote the set of change-point estimates using the proposed method.
Theorem 3.1 establishes the desirable property for the proposed edge detector when M is prespecified
and Gn(M) is asymptotically closed to the true change-point set. Let CM(δn) contain all the sets in the
δn neighborhood of the true change-point locations,

CM(δn) = {(τ′1, . . . , τ
′
M) :, 0 < τ′1 < · · · < τ

′
M ≤ 1, , |τ′s − τs| ≤ δn, for , 1 ≤ s ≤ M}, (3.1)

where δn is some positive sequence.
To establish the consistency of the proposed edge detector, the following assumptions are imposed,

• (A1) (Piecewise smoothness) f (x) is piecewise smooth in the sense of having a finite number of
jump discontinuities such that for all x

f (x + t) − f (x − t) − [ f ](x)
t

∈ L1[0, π] (3.2)

where [ f ](x) = f (x+) − f (x−) is a jump function.
• (A2) Let λn = min1≤k≤M+1 n(τk − τk−1), λn → ∞ as n→ ∞.
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• (A3) There are M finite number of change-points with the corresponding edge.
• (A4) ηmin = min1≤r≤M d(xτr ) is positive constant, where d(x) is the change-point detection statistic.

Assumption A1 provides the piecewise smoothness of underlying functions. A2 is a standard re-
quirement for the theoretical development of a multiple change-points problem. A3 means that there
is a finite number of change-points. And A4 assumes that the smallest signal amount among all the
change-points is bounded away from zero. This assumption allows change-points to be asymptotically
distinguishable. When the number of change-points is known as Mn = M, and the change magnitudes
are fixed we can establish the same rate of convergence as Op(1).

Gelb and Tadmor (1999, 2000, 2002) provide some odd concentration kernels. We propose and
compare the methods with the following kernels. Since the difference

f̂ ′(x) = f̂ (x+) − f̂ (x−)→ ∆, x ∈ (0, 1) (3.3)

has some information about the local discontinuity and may shoot off at the edge. Therefore, the esti-
mator of the derivative of f can be a candidate for edge detection. Consider the underlying function
estimation with the sample Fourier coefficients and then take the difference since the Gibbs phe-
nomenon appears at the edge. The Gibbs phenomenon occurs as overshoot in which the Fourier series
of a piecewise continuously differentiable periodic function behaves at a jump discontinuity. Also
concentration kernels are used for edge detection. With the sample Fourier coefficients φ̂ j, we have

f̂ (x) = φ̂0 +

J∑
j=1

φ̂ j
√

2 cos π jx, x ∈ (0, 1) (3.4)

where J is the truncated number of the sample Fourier coefficients. In practice, a data-driven choice
of J is desirable. For example, Eubank and Hart (1992) proposed to choose J to minimize

r(k) =

k∑
j=1

φ2
j −

kcασ̂2

n
, k = 1, 2, . . . , n − 1,

where cα is controlled to detect the change-points, and σ̂2 is the variance estimator of the underlying
function.
Take its derivative such as

f̂ ′(x) = −
√

2π
J∑

j=1

jφ̂ j sin π jx, x ∈ (0, 1). (3.5)

Appropriate concentration kernels are considered as edge detector statistics. The proposed estimators
are as follows considering the kernels in Gelb and Tamor (2000). These concentration kernels amplify
the gap at the discontinuity points. Let ξ j = j/n.

(i) With a kernel g(t) = t

d1(x) =

∣∣∣∣∣∣∣∣−
√

2π
J∑

j=1

ξ jφ̂ j sin π jx

∣∣∣∣∣∣∣∣ , x ∈ (0, 1). (3.6)
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(ii) Using a polynomial kernel g(t) = ptp with p = 1/2

d2(x) =

∣∣∣∣∣∣∣∣−
√

2π
J∑

j=1

p
(
ξ j

)p
φ̂ j sin π jx

∣∣∣∣∣∣∣∣ , x ∈ (0, 1). (3.7)

(iii) With a trigonometric kernel g(t) = sin πt

d3(x) =

∣∣∣∣∣∣∣∣−
√

2π
J∑

j=1

sin
(
πξ j

)
φ̂ j sin π jx

∣∣∣∣∣∣∣∣ , x ∈ (0, 1). (3.8)

(iv) With an exponential kernel g(t) = exp
(
t2/t2 − 1

)
d4(x) =

∣∣∣∣∣∣∣∣−
√

2π
J∑

j=1

exp

 ξ2
j

ξ2
j − 1

 φ̂ j sin π jx

∣∣∣∣∣∣∣∣ , x ∈ (0, 1). (3.9)

Theorem 3.1 Under assumptions A1 and A2, |τ̂s − τs| = op(1) for s = 1, . . . ,M.
proof. Consider d1(·) function when there is only one change-point τ. Then we extend to the case
when there is a fixed known number of change-points.

The idea of proof is as follows: When the estimated number of change points M̂ is less than M0,
the effect of goodness of fit term gn dominates, which results in P(M̂ < M) → 0. On the other
hand, the effect of the penalty term qn dominates and leads to P(M̂ > M) → 0. Therefore, we have
P(M̂ = M)→ 1.

Consider the change-point is estimated where the maximum of |d(·)| is obtained. Assume that the
change-point occurs at the design point such as τ = c/n for simplicity.

f (x) =

{
0, 0 ≤ x < τ
1, τ ≤ x < 1.

We will show that d(·) has the maximum at the true change-point.
Since φ̂ j → φ j in probability for the sample Fourier coefficients (Kim and Hart, 2011), we have

d(x) =

J∑
j=1

j
n
φ̂ j sin π jx→

J∑
j=1

j
n

[φ j + op(1)] sin π jx = dφ(x) + op(1),

with the corresponding true Fourier coefficients φ j’s. Likewise

d(τ) =

J∑
j=1

j
n
φ̂ j sin π jτ→

J∑
j=1

j
n
φ j sin π jτ = dφ(τ) + op(1),

where dφ(τ) =
∑J

j=1 j/nφ j sin π jτ.
Let d1(x) = |d(x)|. We should show, for some η > 0, τ − η < x < τ + η,

P(|d1(x) − d1(τ)| > δ)→ 0.
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Since d(x)→ dφ(x) and d(τ)→ dφ(τ) in probability by the functional property, we have

P
(
|d(x) − dφ(x)| >

δ

3

)
<
ε

3
,

P
(
|dφ(τ) − d(τ)| >

δ

3

)
<
ε

3
.

For ε > 0, x ∈ (τ − η, τ + η) in some neighborhood of τ, and x∗ = arg max(τ−η,τ+η) |d(x)|.

P(|d1(x) − d1(τ)| > δ) = P(|max|d(x)| − |d(τ)| | > δ)
= P(| |d(x∗)| − |d(τ)| | > δ)
≤ P(|d(x∗) − d(τ)| > δ)
≤ P(|d(x∗) − dφ(x∗)| + |dφ(x∗) − dφ(τ)| + |dφ(τ) − d(τ)| > δ)
≤ P(|d(x∗) − dφ(x∗)| > δ/3) + P(|dφ(x∗) − dφ(τ)| > δ/3)
+ P(|dφ(τ) − d(τ)| > δ/3)

≤
ε

3
+
ε

3
+
ε

3
= ε. (3.10)

Since we have x ∈ (τ − η, τ + η),

P
(
|dφ(x) − dφ(τ)| >

δ

3

)
<
ε

3
,

in the η-neighborhood of τ.
Take J = O(n1/3) since∣∣∣∣∣∣∣∣

J∑
j=1

j
n
φ j(sin π jx − sin π jτ)

∣∣∣∣∣∣∣∣ ≤
J∑

j=1

j
n
|φ jπ j(x − τ) cos π jx∗|

≤ η

J∑
j=1

π j2

n
|φ j|

= η · O
(

J3

n

)
< ε. (3.11)

Similarly, for x > τ and x is in the neighborhood of τ, it holds. Therefore, using (3.10)

P (|τ̂ − τ| > δτ) = P
(∣∣∣∣∣ max
τ−η<x<τ+η

d1(x) − d1(τ)
∣∣∣∣∣ > δ) < ε,

|τ̂ − τ| = op(1).

Likewise for each change-point, under assumptions A1, A2 and A3, we have

|τ̂s − τs| = op(1) for s = 1, . . . ,M. (3.12)

To prove equation (3.12), it suffices to show that for any ε > 0, there exists δ > 0,

P (|τ̂s − τs| < δ, s = 1, . . . ,M) > 1 − ε, as n→ ∞. (3.13)
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Or for Gn(M) = {(τ̂1, . . . , τ̂M)} the set of change-point estimators in CM(δ) in (3.1)

P (Gn(M) ∈ CM(δ)) > 1 − ε.

Let

Dr(M, δ) = {(τ′1, . . . , τ
′
M) : 0 < τ′1 < · · · < τ

′
M ≤ 1, |τ′s − τr | > δ, for1 ≤ s ≤ M}.

By the assumptions, for some r

P ( Gn(M) ∈ Dr(M, δ) ) <
ε

M
.

For every (τ′1, . . . , τ
′
M) ∈ Dr(M, δ),

P (Gn(M) ∈ CM(δn)) = 1 − P

⋃
r

[Gn(M) ∈ Dr(M, δ)]


≥ 1 −

M∑
r=1

P (Gn(M) ∈ DM(δ))

> 1 − ε

which completes the result. �
Theorem 3.2 The true number of change-points M is fixed and finite. Then

P(M̂ = M)→ 1 as n→ ∞ (3.14)

where M̂ is the estimator of M.
proof. From Theorem 3.1

P (τ̂l ∈ Bl) > 1 − δ,

where

Bl =
{
τ′l : 0 < τ′1 < · · · < τ

′
M ≤ 1, |τ′1 − τs| < δn for 1 ≤ s ≤ M

}
P(M̂n < M) = P

M−1⋃
l=1

[τ̂l < Bl]


≤

M−1∑
l=1

P (τ̂l < Bl)

≤ (M − 1)δ < ε.

Therefore,

P(M̂ ≥ M)→ 1 asn→ ∞. � (3.15)
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For M < M∗ for some finite M∗, consider

P(M̂ > M) = {∃ τ̂l such that |τ̂l − τs| > δn, for 1 ≤ s ≤ Mn}

≤ P

 M∗⋃
l=1

[τ̂l < Bl]


≤

M∗∑
l=1

P (τ̂l < Bl) .

≤ M∗δ < ε.

That is,

P(M̂ > M)→ 0 as n→ ∞. (3.16)

P(M̂ = M)→ 1 as n→ ∞. �

4. Simulation

We conducted simulations to investigate the behavior of the proposed change-point estimators. The
data were generated from various change-point models with i.i.d. normal errors having mean 0 and
variance σ2, and the design points xi = i/n, i = 1, . . . , n in the corresponding range. The models
considered are as follows,

Yi = f (xi) + εi, i = 1, . . . , n.

where εi ∼ N(0, σ2). The change-points are assumed to occur at xi ∈ (0, 1).

(i) One change-point

f (t) =


−sign(t) × cos((t/2) × (2 + sign(t))), −1 ≤ t < 0
−1, t = 0
−sign(t) × cos((t/2) × (2 + sign(t))), 0 < t ≤ 1

where

sign(t) =


−1, t ≤ 0
0, t = 0
1, t > 0.

(ii) Periodic discontinuities

f (t) = t −
1
2
, t ∈ (0, 1).

(iii) Two change-points at t = 1, 2 in the step function

f (t) =


0, 0 ≤ t < 1
1, 1 ≤ t < 2
0, t ≥ 2
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(iv) Two change-points at t = 1, 2 in linear trend with ∆ = 0.5

f (t) =


βt, 0 ≤ t < 1
(β + ∆)t + 1, 1 ≤ t < 2
βt, t ≥ 2

(v) Two change-points at t = 1, 2 in trigonometric function

f (t) =


cos(πt), 0 ≤ t < 1
cos(πt) + 1, 1 ≤ t < 2
cos(πt), t ≥ 2

(vi) Two edges at t = −1, 1 in piecewise smooth function

f (t) =

{
cos

(
t − t

2 × (sign(|t| − 1))
)
, −2 ≤ t < 0

cos(2.5t + t(sign(t − 1))), 0 ≤ t < 2.

where

sign(t) =


−1, t < 0
0, t = 0
1, t > 0.

A sample size of n = 200 is used for Case (i) and n = 300 is used for the other cases, and 1,000
repetitions were performed for each edge detection estimator.
To detect the peaks as change-points, the following measures

di(xi) − di(xt−1) > 0, di(xt) − di(xt+1) > 0,
[di(xt) − di(xt−1)] × [di(xt) − di(xt+1)] > 0,

are checked for the possible candidate estimates, for i = 1, 2, 3, 4.
Six types of functions including change-points are considered in the simulation. The change-point

estimates are provided in Figures 1, 2, and 3, respectively. In these figures, the dotted (red) lines are
true underlying functions with data (dot) and the solid lines (green) are d1, d2, d3, d4 statistics used for
change-point estimation. In these figures the input data have small variance σ = 0.1 and the output
of change-point detection statistics seem to have peaks to find the change-points. We intend to show
how the change-point detection statistics behave and move according to the underlying functions.

We finally note via simulation that the results remain satisfactory even with a higher level. It
was difficult to detect the change-points in piecewise polynomial functions when the variances were
bigger. We do not need any a priori knowledge of the upper bound of the number of change-points
for applying it. Table 1 provides the simulation results with three evaluation columns divided by
a vertical bar. In the first column, the probability at least one true edge are calculated. The second
column provides the probability that both edges are detected with top 10 candidates. The third column
shows the probability that both edges are detected with top 5 candidates. Inside each column, four
change-point estimators d1, d2, d3, d4 are listed and computations are done with σ = 0.1 for low
noise and σ = 0.5 for moderate noise. Overall, the proposed edge detectors work fine in the sense
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Figure 1: Estimates d1, d2, d3 and d4 (green line) from the top for Case (i) (left) and Case (ii) (right).
Data (dot) with σ = 0.1 have true underlying function (red line).
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Figure 2: Estimates d1, d2, d3 and d4 (green line) from the top for Case (iii) (left) and Case (iv) (right).
Data (dot) with σ = 0.1 have true underlying function (red line).
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Figure 3: Estimates d1, d2, d3 and d4 (green line) from the top for Case (v) (left) and Case (vi) (right).
Data (dot) with σ = 0.1 have true underlying function (red line).



142 Jaehee Kim

Table 1: Table 1. Comparison of change-point estimators in 1,000 repetitions with J = [n/4] : proportions of
estimated intervals containing true change-points

At least one true edge Both edges with top 10 Both edges with top 5
Model σ d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4

(i) 0.1 1.0 1.0 1.0 1.0 0.998 1 0.998 1.0 0.998 1.0 1.0 0.998
n = 200 0.5 0.782 0.944 0.806 0.937 0.399 0.687 0.420 0.661 0.227 0.440 0.250 0.937

(ii) 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.999 1.0 1.0 1.0
n = 300 0.5 0.789 0.946 0.802 0.95 0.394 0.662 0.412 0.625 0.233 0.414 0.243 0.34

(iii) 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
n = 300 0.5 0.841 0.988 0.857 0.999 0.458 0.851 0.489 0.928 0.278 0.601 0.306 0.542

(iv) 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
n = 300 0.5 0.996 0.999 0.996 1.0 0.922 0.997 0.933 0.937 0.758 0.909 0.776 0.783

(v) 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
n = 300 0.5 0.818 0.922 0.837 0.643 0.434 0.619 0.459 0.247 0.264 0.393 0.282 0.111

(vi) 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.936 0.969 0.511 0.963
n = 300 0.5 0.693 0.889 0.720 0.827 0.254 0.471 0.271 0.054 0.133 0.225 0.141 0.011

of detection proportions. The method is not limited to the normal noise distributions. The noise
distributions can be considered from normal, uniform and double exponential distributions.

Figures 4 to 6 provide the simulation results in barplots of change-points in the left column and
plots of estimates of d1, d2, d3, and d4 in one example data set in the right column. These barplots
show that the estimates concentrate on the true change-points. The plots with the one data set show
that the behavior of the considered statistics tend to have peaks around the true change-points. Each
estimator can detect the edge type change-points for different underlying change patterns.

In Figures 7 to 9 with the simulation results, d4 does not detect both change-points well according
to shape of underlying functions and variance. Therefore appropriate kernel functions might be useful
for change-point detection of some types of underlying functions.

5. Examples

We applied our methodology to a classic data set consisting of the annual volumes of the Nile River
from 1871 to 1970, as shown in Figure 10(a). Cobb (1978) estimated one change-point as t = 28
(year 1898). Cobb (1978) used an approximation to the conditional distribution of the maximum
likelihood estimator of the change-point. The multiple change-points problem can be replaced by
a model selection one. A Bayesian information criterion (BIC) can be used as a model comparison
measure, since a BIC can measure the efficiency of the parameterized model in terms of predicting the
data. It penalizes the complexity of the model where complexity involves the number of parameters
in the model as

BIC = −2 log(Likelihood) + M log n = n log σ̂2
ε + M log n

where σ̂2
ε is an estimator of error variance, M is the number of free parameters to be estimated such

as the number of change-points.
By the BIC criterion, one change-point model is considered in Kim and Hart (2011) and results in

change-point estimate as t = 28. All four edge estimators pick t = 28 as the same as the change-point
estimate in Kim and Hart (2011). Especially edge4 estimates two change-points at t = 28 and t = 68.
The vertical line denotes the change-point estimate as t = 28 in Figure 10(b). The edge measures and
the maximum are chosen from t = 20 to t = 80, that is, 20% is truncated for change-point search.

We also applied our methodology to detect change-points in the daily won-dollar exchange rate
from January 3, 1995 to December 21, 2011 as shown in Figure 11(a). The three methods provide
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Figure 4: Case (i) Barplots (left) in 1,000 repetitions and plots (right) of change-point estimates d1, d2, d3 and d4

(from top to bottom) in one data set (data: black solid, estimates: red dotted) with σ = 0.5, n = 300.
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Figure 5: Case (ii) Barplots (left) in 1,000 repetitions and plots (right) of change-point estimates d1, d2, d3 and
d4 (from top to bottom) in one data set (data: black solid, estimates: red dotted) with σ = 0.5, n = 300.
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Figure 6: Case (iii) Barplots (left) in 1,000 repetitions and plots (right) of change-point estimates d1, d2, d3 and
d4 (from top to bottom) in one data set (data: black solid, estimates: red dotted) with σ = 0.5, n = 300.



146 Jaehee Kim

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

fr
e
q
u
e
n
c
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1

0
1

2
3

4

t

d
1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

fr
e
q
u
e
n
c
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1

0
1

2
3

4

t

d
2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

fr
e
q
u
e
n
c
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1

0
1

2
3

4

t

d
3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

fr
e
q
u
e
n
c
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8

t

d
4

Figure 7: Case (iv) Barplots (left) in 1,000 repetitions and plots (right) of change-point estimates d1, d2, d3 and
d4 (from top to bottom) in one data set (data: black solid, estimates: red dotted) with σ = 0.5, n = 300.
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Figure 8: Case (v) Barplots (left) in 1,000 repetitions and plots (right) of change-point estimates d1, d2, d3 and
d4 (from top to bottom) in one data set (data: black solid, estimates: red dotted) with σ = 0.5, n = 300.
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Figure 9: Case (vi) Barplots (left) in 1,000 repetitions and plots (right) of change-point estimates d1, d2, d3 and
d4 (from top to bottom) in one data set (data: black solid, estimates: red dotted) with σ = 0.5, n = 300.
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Figure 10: (a) Nile data plot (b) Change-point estimates as the vertical line at t = 28 by d1, d2, d3.
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Figure 11: (a) Exchange rate data (b) Change-point estimates as the vertical line at t = 871(870), 3779 by
d1, d3, d4.

two change-points at 871 (Dec. 9, 1997) and 3779 (Oct. 6, 2008) as shown in Figure 11(b). Edge2
estimates change-points at t = 870, 3779.

6. Concluding remarks

In the multiple change-point (MCP) problem, we have proposed estimators based on Fourier series and
concentration kernels from Hilbert transformation for detection of multiple change-points as edges or
discontinuities. We were able to consistently detect any discontinuity or abrupt functional changes
without making any distributional assumptions. The proposed method is elegantly able to estimate
both the number of change-points and their locations, thus eliminating the need for prior knowledge.
The consistency of the proposed procedure is established under mild conditions. The true number of
change-points is assumed to be unknown, and the distribution of change-points is estimated and used
to choose the number of change-points. To facilitate the implementation of the method, we suggest
giving a possible range for the number of change-points, which has been shown to work faster.

The proposed method is based on the assumption that there exists at least one change-point. In
practical applications, we need to use some tests for change or discontinuity to verify this assumption.
This edge detection method can be extended to the multidimensional case with the choice of an ap-
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propriate concentration factor. Our proposed method is an omnibus method, and thus cannot diagnose
whether a change occurs in location, scale, or shape. Also the method can be extended to the case
with dependent noises such as AR(p) for future applications. However our methods have limitation
that the large variability of data makes it hard to detect the change-points. In such cases, local kernel
functions are expected to improve the detection ability.
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