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Abstract 
 

In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral 
image classification is proposed based on multi-layer superpixels in various scales. 
Superpixels of various scales can provide complete yet redundant correlated information of 
the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by 
sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer 
superpixels are extracted on the false color image of the HSI data by principal components 
analysis model. Secondly, a group of discriminative sampling pixels are exploited as 
reconstruction matrix of test pixel which can be jointly represented by the structured 
dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy 
is employed for estimating sparse vector for the test pixel. In each iteration, the approximation 
can be computed from the dictionary and corresponding sparse vector. Finally, the class label 
of test pixel can be directly determined with minimum reconstruction error between the 
reconstruction matrix and its approximation. The advantages of this algorithm lie in the 
development of complete neighborhood and homogeneous pixels to share a common sparsity 
pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial 
information. Experimental results on three real hyperspectral datasets show that the proposed 
joint sparse model can achieve better performance than a series of excellent sparse 
classification methods and superpixels-based classification methods. 
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1. Introduction 

Hyperspectral imaging has been widely used in remote sensing information collection, 
which is acquired through hundreds of narrow continuous spectral bands to constitute the data 
set. In hyperspectral image (HSI), each pixel is a high dimensional mixture vector consisting 
of different spectral response that result multiple channels and complex texture for difficult 
classification[1]. 

The task of hyperspectral image classification is to assign the image pixels in hyperspectral 
images to a predefined class label. The existing classification methods can be divided into two 
categories according to whether or not to adopt training samples, namely, supervised and 
unsupervised classification. Supervised classification requires a labeled sample set for training 
the classifier to identify unlabeled pixels. The unsupervised classification is also called 
clustering technology, makes use of the information contained in unlabeled data to classify 
HSI pixels without any training samples. In general, the supervised methods can improve the 
accuracy and ensure the efficiency compared to unsupervised methods. 

In the past decades, HSI classification has been a very active research topic in remote 
sensing. Many classification methods have been developed in order to improve the 
classification accuracy and cut the dependence on the labeled samples. Among them, 
classification methods based on support vector machines [2,3,4] and multinomial polynomial 
regression(MLR)[5,6] have been extensively investigated and they have shown powerful 
capability of classification. Aiming at the high dimension and less samples, to compress raw 
data into low dimensional space or subspace learning are also research hotspots to reduce the 
difficulties of classification. A number of excellent dimensionality reduction methods have 
been exploited for HSI classification, such as manifold learning[7], local fisher discriminant 
analysis [8] and multiple kernels[9].In addition, the classification strategy based on ensemble 
classifier and random forest provides a structure analysis method for HSI classification 
[10,11]. 

Although the aforementioned methods have improved the classification efficiency through 
spectral information, their results often appear noisy in many cases. This is mainly due to the 
blindness of feature extraction and representation. In addition, the training samples tend to be 
very limited, and therefore it is difficult to extract the essential features of each class for more 
accurate classification. In order to further improve the classification performance, more and 
more new researches attempt to explore spectral-spatial knowledge of pixels. It is based on the 
assumption that the pixels in adjacent regions should have similar spectral properties, which 
consist of the same materials. 

In recent years, with the maturity of the compressed sensing theory, sparse representation 
(SR) has gradually been embedded into the computer vision and image processing tasks and 
applications, such as face recognition[12], image restoration[13], target detection[14], humane 
action recognition[15] and hyperspectral unmixing[16]. The sparse representation has become 
an important technology to solve the visual cognitive tasks, and more related researches based 
on sparse representation in HSI classification appears [17-25]. On the one hand, many 
superpixels-based methods effectively provide the context information of local regions for 
pixels classification [26,27]. 

To the classification task, feature extraction and representation of pixel characteristics is the 
key to accurate classification [28, 29]. In particular, SR can represent the linear components of 
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high dimensional signals based on a number of non-zero coefficients and pre-defined 
dictionaries, which demonstrates that SR has strong ability in classification. 

Chen[17] proposed a classification method integrating the contextual information of 
adjacent area into a sparse representation model called Simultaneous Subspace Pursuit, which 
performs better than the classical supervised classifier support vector machines in most cases. 
Later, the sparse representation is further combined with the kernel space optimization method 
to obtain new progress in[18]. Zhang[19] et al. proposed a non-local weighted joint sparse 
representation model to improve the classification performance in the exploration of sparse 
solver. In[20], a correntropy-based metric has been proposed for robust classification for 
handling non-Gaussian noise and large outliers. Fang et al. believed that different scale 
regions can be incorporated into the complementary information for classification, and they 
proposed a multi-scale adaptive sparse representation classification model of HIS[21]. On one 
hand, superpixels-based methods are proposed to effectively exploit the spatial information of 
the HSI, but they are all work in single scale by experience [22, 23]. The recovered sparse 
coefficients are utilized to determine the class label of the superpixel. On the other hand, the 
researchers also pay attention to the introduction of dimensionality reduction. In[24], a sparse 
matrix transform-based LDA method is proposed for HSI classification. The sparse matrix can 
be used to decompose the high dimension matrix by sparse parameterization. In this way, the 
LDA model can estimate optimal discriminant vector more accurately even in the case of 
limited training samples. Zhai et al. proposed an weighted sparse graph embedding method for 
HSI classification [25]. It offers data-adaptive neighborhoods as training pixels for test pixels 
to implement sparse coding, which is more robust to noise. Based on SR and manifold learning, 
Huang et al. proposed a sparse discriminant embedding method preserves the sparse 
reconstructive relations and explicitly boosts the discriminating information from 
inter-manifold structure of training samples[30].    

It is obviously that the spatial context information is supremely helpful for the feature 
representation and the extraction of pixels. Therefore, most aforementioned researches are 
committed to utilize similar and adjacent regions context information to achieve sparse 
modeling for classification. However, the existing models still suffer from following 
problems: 1) the strategy of region selection for context information is rather blindness in local 
area; 2) the utilization of context information is monotonous and performs poorly when faced 
with complex and changing materials; 3) the sparse reconstruction model and context 
information are lack of completeness. In order to solve the above problems, we believe that the 
multiple superpixels can provide complete context information for a specific pixel, and the 
combined superpixel regions can describe the class features better and improve the 
classification accuracy. Motivated by the above consideration, we propose a HSI classification 
method based on the joint sparse representation based on group sparsity of discriminative 
optimial sampling on multi-layer superpixels in this paper. We utilize different types of 
segmentation method to extract multiple-scales superpixels, and each test pixel is contained in 
a set of superpixels from different segmentations. Thus, a group of represent pixels are chosen 
from multiple superpixels as similar reconstruction matrix(SRM) of the test pixel the group 
feature of and its group sparse coefficients can be estimated by orthogonal matching pursuit 
algorithm. Finally, the class label of the test pixel is determined by the minimum 
reconstruction error of SRM computed by group sparse coefficients and subdictionary of each 
class. 

The rest of this paper is organized as follows: the related works are reviewed in Section 2.In 
Section 3, the Multi-layer superpixles-based joint sparse representation classification 
(MSJSRC) is introduced in detail. Several experiments were conducted to show the 
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effectiveness of the proposed method as reported in Section 4. Furthermore, the comparisons 
with several state-of-the-art HSI classification methods are given. Finally, conclusions are 
presented in Section 5. The proposed MSJSRC framework is illustrated in Fig. 1. 
 

 
Fig. 1. The Multi-layer superpixles-based joint sparse representation classification framework for 

hyperspectral image classification 

2. Related Work 
The research in this paper is based on the superpixels extraction, sparse representation 
classification and joint sparse representation. Hence, we introduce these technologies that will 
be adopted in this paper. 

2.1 Superpixels extraction 
In many superpixels extraction methods, mean shift segmentation is a pixel clustering process 
based on the maximums estimation of probability density in the spatial and feature space, 
which can smooth homogeneous area and obtaining over-segmentation results with complete 
shape on large scales[32]. Another excellent method also perform well at local detail of 
complex shape or relative dispersion called graph-cut, and its basic principle is to map the 
image to an undirected graph and utilize the minimum cut theory to divide the pixels as 
segmentation[31]. In addition, another method is to construct a relatively complete 
homogeneous region with the linear clustering strategy of seed expansion named SLIC [33]. 
These three methods adopt different strategies of superpixel calculation, who are helpful for 
building complete dictionary of pixel representation. Therefore, we choose the three 
above-mentioned methods to generate a complete superpixels set to construct the complete 
sparse representation. The following are brief reviews on the principles of the three methods. 
 
2.1.1 Mean-Shift 

The mean shift image segmentation is a straightforward extension of the discontinuity 
preserving smoothing by probability density estimation. Each pixel is associated with a 
significant mode of the joint domain density located in its neighborhood, after nearby modes 
were estimated by probability density estimation with feature space analysis technique. One 
can get various segmentation superpixels results with different employed kernel bandwidths of 
corresponding feature and spatial resolution. 
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Let xi and zi, i=1,...n be the d-dimensional input and filtered image pixels in the joint 
spatial-range domain and Li  is the label of the i-th pixel in the segmented image. 
1) Compute the mean shift vector M(x)i iteratively until converged, and store all the 

information about the d-dimensional convergence point in  zi 
2) Delineate in the joint domain the clusters {Cp} p=1…m by grouping together all  zi which 

in the  hs and hr range domain 
3)  For each i=1,...,n, assign Li ={p | zi ∈Cp  } 
4) Optional: Merge meaningless regions containing less than given pixels. 

 
2.1.2 Graph cut-NNG 

Graph-based image segmentation techniques generally represent the problem in terms of a 
graph G = (V, E) where each node vi ∈V corresponds to a pixel in the image, and the edges in 
E connect certain pairs of neighboring pixels. The weights of all edges are assigned according 
to the similarity of some property, and the nodes in the graph are clustered by finding 
minimum cuts in the graph, which making data within the same group as similar as possible 
and within the different group as different as possible. The generated superpixels are the 
minimum spanning tree of the image. The internal difference of a component C is defined as 
the largest weight in the minimum spanning tree:    
 

mst(C,E)
(C) max (e)

e
Int ω

∈
=   (1) 

The differences between two components C1 and C2 is defined as the minimum weight edge 
connecting the two components:  
 

, ,( )
(C ,C ) min ( , )
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By means of the definition of the internal difference and the difference between two 
components, as well as comparison with in their relationship, we can get the judgment 
conditions of merging: 

 (C ,C ) (C ,C )
(C ,C ) 1 2 1 2

1 2

true if Dif MInt
D

false otherwise
>
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

  (3) 

MInt is the minimum internal difference, 
 (C ,C ) min( (C ) C ), (C ) C ))1 2 1 1 2 2MInt Int Intt t= + +   (4) 

The threshold function τ controls the degree to which the difference between two 
components must be greater than their internal differences: τ=k/|C|, where k is a scale 
parameter and a larger k causes a preference for larger component. 
 
2.1.3 SLIC 

SLIC clustering pixels based on their property similarity and neighbour pixels in the image 
plane, which can generate compact and even superpixels effectively. SLIC predefined a 
desired superpixels number K in equally sized approximately. When the size of image is M×N 
pixels, each superpixel contains about M×N/K pixels. The K superpixel cluster centers should 
be chosen at every grid interval /S M N K= ×  by sampling K seed locations corresponding to 
the lowest gradient position. Since the spatial approximate size of a superpixel is 
approximately S2, SLIC implements the clustering process pixels lay within a 2S×2S area 
around the superpixel center on image plane. This becomes the search area for the pixels 
nearest to each cluster center. 



5020                      Haifeng et al.: Hyperspectral Image Classification via Joint Sparse representation of  Multi-layer Superpixles 

1) Sampling the lowest gradient position at regular grid in an  S×S  neighborhood as cluster 
centers. 

2) for each cluster center Ck do 
3) Gather the best matching pixels from a 2S×2S square neighborhood around the cluster 

center according to the distance measure in [l, a, b, x, y] feature space. 
4) end for 
5) Compute new cluster centers and residual error E, until E ≤ threshold. 
6) Enforce connectivity by relabeling disjoint segments with the labels of the largest 

neighboring cluster. 

2.2 Sparse representation and Classification on HSI 
In the sparsity representation model of computer vision, it is assumed that an test pixel can be 
reconstructed by a sparse linear combination of some atoms from a dictionary[17]. Let y∈ Rd×1 
be a test pixel, where  d  is the feature vectors dimension of training image. A given matrix  
D∈RM×N consist of some atoms as dictionary, the test pixel can be approximately represented 
by multiplying the dictionary with a sparse vector α.The test pixel y can be sparsely expressed 

The sparse vector can be recovered by solving the following optimization problem: 
 y Dα=   (5) 

The sparse vector can be recovered by solving the following optimization problem: 
 arg min 0F 0

y D subject to Kaaa  = − <   (6) 

In HSI classification, supposing the datasets have C  distinct classes and stack a few training 

pixels from the i-th class as columns of a dictionary , ,
n

c31 2 1
M nnn n

c 1 2 3D D D D R ×∑ = ∈   ,Where 

the DC is a low-dimention space included 
n

c1
n∑ training samples, and M refers to the number 

of bands of the HSI. The hyperspectral pixel belonging to the i-th class can be compactly 
represented as a linear combination of the given training samples. With the optimal solution of 
sparse vector α, the class label of y is decided based on the following criterion of minimum 
reconstruction error: 

 arg min { , ... }cn
c F

c y D c 1 2 Ca= − =   (7) 

3. Multi-layer Superpixles-based joint sparse representation 
classification (MSJSRC)  

In order to achieve complete and optimized sparse representation, we present a multi-layer 
superpixels supervised sparse representation classification method in this section. According to 
the aforementioned analysis, the combination of adjacent pixels for sparse representation can 
produce effective encoding of class characteristics and be useful for improving classification 
accuracy. In addition, multi-layer superpixels as grouping cues allows us to effectively encode 
complex image structures in joint sparse model[39]. The implementation detail of the method 
is described below. 
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3.1 Adaptive Superpixels extraction 
Existing superpixel segmentation algorithms are always running on the gray scale and the 
three component image. These methods are not suitable for conducting on high-dimensional 
hyperspectral image directly that lead to large computing load. Considering the high 
correlation of hyper-spectral features and information redundancy, dimensionality reduction is 
an ideal solution to map high-dimensional data to low dimensional space through a linear 
projection and retain more of the original data at the same time. PCA[40] is able to maximize 
the intrinsic information of the data after dimension reduction by measuring the size of the 
variance of the data in the projection direction. Therefore we adopt PCA method to extract first 
three principle components of hyper-spectral data to reconstruct three component image for 
superpixels extraction. 

We set up their parameters for extracting various scales of superpixels according to their 
respective advantages of the three methods. The main parameters of mean-shift are spatial and 
spectral feature bandwidth and minimum area: hs, hr, and Min-area. They are set rely on the 
image size and roughness of the input image and get the segmentation SegMS: hs=  

/M N K K× ×  , hr=16, and Min-area= /M N K K× × . Where M and N are the size of the input 
image and K is the classes number containing in the image. The gauss smooth δ= 0.8 constant 
scale parameter k = 100 and for medium scale super pixels SegNNG. The superpixels number of 
SLIC tend to be smaller to obtain complete homogeneous areas, thus the number K=M×N/80 
is proper for getting ideal homogeneous superpixels SegSLIC by experience. The superpixles 
are show in Fig. 2. 

 

 
Fig. 2. Discriminative optimal sampling of Multi-layer superpixles for joint sparse representation 

classification. (a) Input image (b) false color image (c)MS.(d)NNG. (e)SLIC. 

 

3.2 Multi-layer superpixles joint sparse representation classification 
for joint sparse representation classificationAfter superpixels extraction, any pixel y of the 

input data corresponding to a superpixel set, and these superpxiels are considered having 
similar materials with y and multiple scales superpxiels will provide complete class 
information corresponding to pixel y. Thus, the combined superpixels set around y can be 
reconstructed by the combined representation of multiple scales superpxiels as 

 { }sup sup sup sup sup sup sup sup sup, .... , .... , ....
1 L 1 L 1 L

L
2 2 2 1

Y Y Y Y D D D D Dα α α α α α Α     = = = =        (8) 
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where L is the superpixels number, Asup is the sparse coefficients matrix corresponding to y 
which consists of the indexes of the selected atoms in the joint dictionary Dsup. The proposed 
model enables pixels from all corresponding superpixels [sup1, sup2,... supL] to be represented 
by a few common atoms and nonzero rows of the sparse coefficients matrix. Thus the 
recovering of  [sup1, sup2,... supL] can be solved by the following joint representation model: 

 { } { }sup
,

arg min
L

L L
k 01 1F row 0k 1

y D subject to KΑ Α Α
=

= − <∑   (9) 

where { }L

1
Α =[A1, A2,... AL] is the joint sparse coefficients of corresponding matrix of test 

pixel y, and ||.|| is the Fronenius norm. K0 is the upper bound of the sparsity level that is the 
maximum number of selected atoms from the dictionary for the best simultaneous 
approximation. 

However, the estimation of sparse feature vectors of a test pixel using the reconstruction of 
the combined superpixels region exist problems below: 1. For all composite superpixels 
regions of test pixel x contain redundancy information, and the sparse pixel estimation results 
in the overlapping regions is not unique for classification of test pixel. 2. The reconstruction 
process of multiple combination superpixels costs more computational complexity. 

Therefore, we proposed a discriminative optimal sampling pursuit algorithm for 
approximation sparse coding for two reasons above. The joint sparse of signals share a 
common sparse component and discriminative information can improve the promising 
recognition ability[34,35,36]. The schematic of the sparse coding of our method is shown in 
Fig. 3. 

 
Fig. 3. The illustration of the sparse coefficients estimation with multi-layer superpixels. 

 

Firstly, a joint dictionary D=[D1…Dm,... DM]∈RB×W is constructed by selected labeled 
training samples with M classes and W is the atoms number, and B denotes the number of 
spectral bands. Suppose a test pixel y=[ y1, y2,... yB] with B bands, find all corresponding 
superpixels in all segmentation superpixels. All pixels in each superpixel are initialized as 
matrix Ysup_k, the correlation between y and Ysup_k(B×P) is calculated and result as a column 
vector k sup_k

PQ y Y= ⋅ . In order to reduce the computational complexity and redundancy 
information, we decomposed the pixels set { }sup_ k

1 2 PS P ,P ...P  into two parts according to the 
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eigenvalues in the correlation vector k
PQ . All the atoms eigenvalues are sorted in descending 

order in a sequence sup_ kS . The first half part { }sup_ k
com 1 2 P / 2S P ,P ,..P=  contained more common 

informative components and the other part { }sup_ k
ind 1 2 P / 2S P ,P ,..P=  contained more independent 

informative components. The homogeneous attributes of one class is easy to be described with 
common part, and independent informative components express expansibility and tolerance of 
the corresponding class. According to the sorted correlation degree in sup_ kS , the first N pixels 
are selected from sup_ k

comS  and sup_ k
indS  to form the similar reconstruction matrix YSRM  of the test 

pixel y. Thus, a novel discriminative sampling matrix norm is designed as substitution of 
combined superpixels set: 
 

,
arg minSRM SRM SRM SRM 0F row 0

Y D subject to KΑ Α Α= − <   (10) 

The joint sparse represent method fuse similar reconstruction matrix information for 
accurate classification, and the detailed class-labeled OMP algorithm is shown in Algrithm 
1.The approximate solution of the similar matrix can be solved by the Orthogonal Matching 
Pursuit algorithms. The correlation degree between YSRM and DI is defined as x T

t 1 I ,t SRMR D Y= = , 
DI,t=0=D. In each iteration, we choose the best represent atoms from D to update a segmental 
optimal index dataset I and the DI is utilised to estimate the joint sparse coefficients ASRM of 
the test pixel y. The sparsity-constrained optimization problem of  ASRM  in (10) is obtained by 
the least squares method[42] and the analytic solution is cumputied by 

 ( ) 1T T SRM
SRM I I IA D D D Y

−
=   (11) 

  With the recovering of sparse representation matrix ASRM, the label of the test pixel xi can 
be decided by the lowest total representation error: 
 i SRM C SRM F

c
C arg min Y D A= −   (12) 

Algrithm 1.  The pseudo-codes of the Multi-layer superpixles joint sparse representation 
classification 
Input: A HSI data matrix set X= [x1, x2, x3,... xV]ϵRB×V, mutiple superpixels [Seg1, Seg2,...SegL] 
Initialization:Structured dictionary of labeled samples D (D1, D2..DM), sparsity level K0 
For each pixel x in HSI data matrix set X 
1. Find all superpixels {sup1}, sup2... supl} containing x in all segmentations, the coverage regions of all 

superpixels are initialized as a complete matrix [Ysup_1, .. Ysup_k ,.. Ysup_L],  k=1,2...,L 
2. Compute the correlation vector between test pixel x and Ysup_k, then sort the pixel sequence as 

Ssup_k{P1-PP}, for each superpixels {sup1,sup2...supL}   in descending by coefficient value 

3. For all S1, S2,..., SL, divide each Ssup_k into two parts as sup_ k
comS  and sup_ k

indS  , and then select N pixels 

from sup_ k
comS   and sup_ k

indS  as the reconstruction matrix YSRM ∈RP×B of test pixel x for combined region 
of superpixels  

4. Compute the self-residual correlation matrix as t T SRM
x CR D Y=   

5. According to the correlation ranking in t
xR , and select top N atoms merged the index c ,t

coreI  into index 
set I 

6. Sum the correlation degree of each class, to update the complete dictionary DI for each class(1 to M) 
7. Sparse coefficients are estimated according to the updated dictionary DI 
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        ( ) 1t T T SRM
SRM I I IA D D D Y

−
=  

8. Compute the updated residuals correlation matrix  
      ( )x T SRM t

t 1 I SRMR D Y D A+ = −   

9. While stopping criterion (t>K0) has not been met, repeat 4-8  
10. Label the test pixel by  
 

i SRM C SRM F
c

C arg min Y D A= −  

11. Turn to the next test pixel  
End For 
Output:  A 2-D matrix which records the labels of the all pixels  

4. Experimental results 
In this section, we evaluated the effectiveness of the proposed MSJSRC method on three real 
HSI datasets generated by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and 
the Reflective Optics Spectrographic Imaging System (ROSIS) instruments. In addition, we 
compared the proposed method with some advanced classification methods. 

4.1 Data Description and Experimental Setup 
We selected three well-known publicly available data sets for experimental analysis, 

including Indian Pines, Salinas, and Pavia University. The class descriptions and sample 
distributions for the three data sets are given in Table 1, 2 and 3. The false-color images of 
three test images are displayed in Fig. 4. 

Indian Pines is generated from Northern Indiana on June 12, 1992, that consists of 145×145 
pixels contained 16 land-cover classes with 220 contiguous spectral bands to which we have 
removed 20 noisy bands because of the water absorption bands. The 16 ground-truth classes of 
training and test are listed in Table 1. About 10% of labeled data are used as training samples 
and the rest are used for testing are listed in Table 1. 

The second testing set is the Salinas Valley collected by the AVIRIS sensor over Salina 
Valley, California in 1998. This data set is in size of 512×217 pixels with 224 contiguous 
spectral bands to which we have removed 20 noisy bands and finally 204 out of the 224 bands 
are used in our experiment. The 16 ground-truth classes are listed in Table 2. About 1% of 
labeled data are used as training samples and the rest are used for testing are listed in Table 2. 

The Pavia University was acquired by the Reflective Optics System Imaging Spectrometer 
(ROSIS) sensor during a flight campaign over Pavia University, northern Italy. The number of 
spectral bands is 103 and the image size is 610×340 pixels. There are 9 classes and the original 
number of spectral bands is 115. 12 noisy bands are removed and finally 103 out of the 115 
bands are used in our experiment. The 9 ground-truth classes and 100 labeled pixels for each 
class were randomly chosen for training and the rest are used for testing are listed in Table 3. 

 
Table 1. Training and test set for 16 classes in Indian Pines dataset 

Class Name Training test 
1 Alfalfa 6 48 
2 Corn-notill 144  1290  
3 Corn-min 84  750 
4 Corn 24  210 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018                             5025 

5 Grass/Pasture 50  447 
6 Grass/Trees 75  672 
7 Grass/Pasture-mowed 3 23 
8 Hay-windrowed 49  440 
9 Oats 2  18 

10 Soybeans-notill 97 871 
11 Soybeans-min 247 2221 
12 Soybeans-clean 62 552 
13 Wheat 22 190 
14 Woods 130 1164 
15 Building-Grass-Trees-Drives 38 342 
16 Stone-steel Towers 10  85 

 Total 1043 9323 
 

Table 2. Training and test set for 16 classes in Salinas dataset 
Class Name Training test 

1 Brocoli_weeds 20 1989 
2 Brocoli_weeds_2 37 3689  
3 Fallow 20  1956 
4 Fallow_rough_plow 14  1380 
5 Fallow_smooth 27 2651 
6 Stubble 40  3919 
7 Celery 36 3543 
8 Grapes_untrained 113  11158 
9 Soil_vinyard_develop 62  6141 
10 Corn_senesced_weeds 33 3245 
11 Lettuce_romaine_4wk 11 1057 
12 Lettuce_romaine_5wk 19 1908 
13 Lettuce_romaine_6wk 9 907 
14 Lettuce_romaine_7wk 11 1059 
15 Vinyard_untrained 73 7195 
16 Vinyard_trellis 18 1789 
 Total 543 53586 

 
Table 3.  Training and test set for 9 classes in Pavia dataset 

Class Name Training test 
1 Asphalt 100 6531 
2 Meadows 100 18549 
3 Gravel 100 1999 
4 Trees 100 2964 
5 Metal sheet 100 1245 
6 Bare soil 100 4929 
7 Bitumen 100 1230 
8 Bricks 100 3582 
9 Shadows 100 847 
 Total 900 41876 
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To evaluate the performance of the proposed method, we adopted three commonly preferred 

objective metrics called overall accuracy (OA), average accuracy (AA), and the kappa 
coefficient(kappa)[37]. The overall accuracy shows the ratio between correctly classified test 
samples and the total number of test samples, and average accuracy shows the average of the 
percentages of the correctly classified samples in each class. The kappa coefficient is used to 
measure the correct degree of consistency of classified pixels. In addition, we also take into the 
consideration of the computation time and sparsity level during efficiency testing. 

 

 
Fig. 4. False-color images of three test HSI: (a) AVIRIS Indian Pines image. (b)Salinas Valley data. (c) 

University of Pavia dataset. 

 

4.2 Experiments on various superpixels 
In this section, we test the proposed method on different superpixles sets obtained by three 
segmentation methods(Mean-shift, NGG, SLIC) and all their possible combinations as [MS, 
NNG, SLIC, MS+SLIC, MS+NNG, NNG+SLIC, MS+NNG+SLIC]. The experiment results 
of three test images are provided and analyzed followed. 

We test the performance of the propose method on Indian Pines dataset at first, and 10% of 
the labeled data were randomly selected as the training samples. We conduct the experiment 
on three superpixels and the parameters setting is described in section 3.1. The number of 
discriminative optimal sampling is set as N=9. The classification maps obtained by various 
superpixels combination are shown in Fig. 5. From Fig. 5, we can see that the joint dictionary 
learning on multiple superpixels express more smooth area than single superpixels constraint. 
The quantitative metrics results (OA ,AA and Kappa coefficients) averaged over ten runs for 
various superpixels combinations are provided in Table 4. The overall classification accuracy 
(averaged over ten runs) is increased by 0.14% from [MS, NNG, SLIC] to [MS +SLIC, 
MS+NNG, NNG+SLIC], and overall classification accuracy (averaged over ten runs) is 
increased by 0.15\% from [MS +SLIC, MS+NNG, NNG+SLIC] to [MS+NNG+SLIC]. 
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Fig. 5. Classification maps and overall classification accuracy (OA) for the Indian Pines dataset using 

about 10% labeled samples on various superpixels combinations. 
 

Table 4.  Classification accuracy (%) for the Indian Pines dataset on various superpixels 
combinations[MS, FH, SLIC, MS +SLIC, MS+ NNG, NNG+SLIC, MS+NNG+SLIC](N=9) 

Class MS FH SLIC MS+ 
SLIC 

MS+ 
NNG 

NNG+ 
SLIC 

MS+NN 
G+SLIC 

1 95.12 91.87 86.77 87.80 86.99 92.68 93.90 
2 96.86 97.56 96.75 97.92 97.35 97.85 98.28 
3 95.61 97.05 97.46 97.76 98.92 98.34 97.25 
4 95.86 97.81 96.71 94.52 96.87 98.90 94.13 
5 99.69 99.16 97.32 96.24 97.54 96.85 96.89 
6 98.67 99.89 99.75 99.64 99.69 99.69 100.00 
7 74.67 100.00 100.00 100.00 100.00 97.33 98.00 
8 100.00 99.92 99.92 100.00 92.92 100.00 100.00 
9 66.67 62.96 74.07 50.00 70.37 77.78 72.23 
10 96.80 98.32 97.60 97.30 97.37 96.45 97.48 
11 99.15 98.73 98.52 99.03 98.74 98.61 98.75 
12 97.81 96.50 96.50 98.12 95.01 94.88 97.19 
13 99.27 98.36 98.73 99.09 98.55 98.91 97.55 
14 100.00 100.00 100.00 100.00 100.00 99.88 99.95 
15 96.45 97.59 94.14 97.69 97.41 97.50 98.70 
16 95.63 97.22 96.03 96.82 96.82 93.25 97.02 

OA 98.12 98.17 97.87 98.23 98.22 98.13 98.34 
AA 95.73 94.95 96.52 94.86 95.72 96.17 96.08 

Kappa 97.14 97.99 97.61 97.98 97.97 97.87 98.10 
 

For the Salinas image, 1% of the labeled data were randomly selected as the training 
samples. The number of discriminative optimal sampling is set as N=9 in dictionary updating. 
The classification maps obtained by various superpixels combination are shown in Fig. 6. The 
quantitative metrics results (OA, AA and Kappa coefficients) averaged over ten runs for 
various superpixels combinations are provided in Table 5. The overall classification accuracy 
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(averaged over ten runs) is increased by 0.23% from [MS, NNF, SLIC] to [MS+SLIC, 
MS+NNG, NNG+SLIC], and overall classification accuracy (averaged over ten runs) is 
increased by 0.28% from [MS +SLIC, MS+NNG, NNG+SLIC] to [MS+NNG+SLIC]. We can 
see that the reconstruction area of the test pixel is changed with the joint constraints of 
superpixels, which expressed much more accuracy than single segmentation constraint. 

 
Fig. 6. Classification maps and overall classification accuracy (OA) for theSalinas using about 1% 

labeled samples on various superpixels combinations. 
 

Table 5.  Classification accuracy (%) for the Salinas dataset on various superpixels 
combinations[MS, FH, SLIC, MS +SLIC, MS+ NNG, NNG+SLIC, MS+NNG+SLIC](N=9) 

Class MS FH SLIC MS+ 
SLIC 

MS+ 
NNG 

NNG+ 
SLIC 

MS+NN 
G+SLIC 

1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
2 100.00 99.62 99.55 97.55 99.73 99.97 99.67 
3 98.93 99.59 99.97 99.92 99.59 99.44 99.74 
4 97.43 94.82 98.33 97.46 96.74 97.32 98.73 
5 99.57 99.53 99.15 99.36 99.00 99.57 99.34 
6 100.00 99.98 99.98 100.00 100.00 100.00 100.00 
7 99.98 100.00 99.97 100.00 99.97 100.00 100.00 
8 95.29 95.49 94.64 95.22 95.47 94.45 94.74 
9 99.95 99.95 99.99 99.91 99.93 99.95 99.93 
10 96.80 98.03 97.39 96.44 96.35 98.31 96.55 
11 99.85 99.95 99.72 100.00 99.95 100.00 99.91 
12 99.87 99.79 99.89 99.76 99.92 99.89 99.79 
13 99.50 99.28 99.17 99.50 99.28 99.34 99.17 
14 98.77 98.87 97.83 99.34 98.44 97.97 98.49 
15 89.70 87.40 91.04 90.82 89.96 92.71 93.76 
16 97.84 97.43 97.70 99.33 98.55 96.56 98.35 

OA 97.19 96.92 97.26 97.38 97.22 97.47 97.64 
AA 98.34 98.12 98.40 98.55 98.30 98.47 98.64 

Kappa 96.87 97.05 96.95 97.08 97.05 97.19 97.38 
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For the Pavia University image, 100 labeled data were randomly selected as the training 
samples. The number of discriminative optimal sampling is set as N=12. The classification 
maps obtained by various superpixels combination are shown in Fig. 7. The quantitative 
metrics results(OA, AA and kappa coefficients) averaged over ten runs for various superpixels 
combinations are provided in Table 6. From Table 6, we can see that the overall classification 
accuracy (averaged over ten runs) is increased by 0.24\% from [MS, NNF, SLIC] to 
[MS+SLIC, MS+NNG, NNG+SLIC], and overall classification accuracy (averaged over ten 
runs) is increased by 0.84\% from [MS +SLIC, MS+NNG, NNG+SLIC] to [MS+NNG+SLIC]. 
The classification maps obtained by various superpixels combinations are shown in Fig. 7. 

 

Table 6.  Classification accuracy (%) for the Pavia University dataset on various superpixels 
combinations[MS, FH, SLIC, MS +SLIC, MS+ NNG, NNG+SLIC, MS+NNG+SLIC](N=9) 

Class MS FH SLIC MS+ 
SLIC 

MS+ 
NNG 

NNG+ 
SLIC 

MS+NN 
G+SLIC 

1 72.66 73.96 74.77 74.42 77.11 73.21 76.52 
2 95.42 94.23 94.95 96.52 95.15 93.88 96.14 
3 97.19 98.95 97.28 97.39 97.32 96.05 96.98 
4 96.46 95.75 95.66 94.77 96.22 95.57 96.09 
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
6 97.75 98.27 98.76 97.70 97.85 97.22 97.46 
7 100.00 100.00 99.89 100.00 100.00 100.00 100.00 
8 93.35 93.05 97.64 97.79 97.30 92.62 97.06 
9 85.34 85.70 84.52 82.15 84.10 83.33 85.11 

OA 92.19 91.46 92.73 93.17 93.08 91.32 93.36 
AA 93.13 93.32 93.72 93.44 93.90 92.43 93.93 

Kappa 89.70 89.39 90.41 90.96 90.86 88.56 91.22 

 

 
Fig. 7. Classification maps and overall classification accuracy (OA) for theUniversity of Pavia image 

using 100 labeled samples from each class on various superpixels combinations 
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The different scales of superpixels provide a relatively complete homogeneous region 
around test pixel, and coupled with discriminant optimal sampling can get complete and 
simplified reconstruction region. From the experiment results, we can see that more sampling 
pixles in reconstruction regions can take more characteristics of class and the classification is 
more accurate. Moreover, our method is convenient for the selection and adjustment of the 
reconstruction area which making the algorithm more efficient and feasible.  

4.3 Effects of parameter N 

 
Fig. 8. Classification effect of the selected atoms N for test images.(a) Indian pines; (b) Salinas; (c) 

University of Pavia 
In this section, we further analyze the effects of parameter N on the three images. The 

selected segmental optimization atoms in dictionary updating are critical for joint 
representation, which is crucial for updating dictionary and generating adaptive sparse 
coefficients. The value of N has impacted on sparse representation, thus may affect the 
subsequent encoding process. We test the impact of N on the final classification accuracy of 
the MSJSRC on three test image. For the Indian Pines dataset, ten percent of the samples per 
class are chosen as the training set, and the remaining 90% are used for testing. For the Salinas 
dataset, one percent of the samples per class are chosen as the training set, and the remaining 
99% are used for testing. For the Pavia University dataset, 100 labeled samples from each 
class are chosen as the training set, and the remaining are used for testing. For the parameter 
setting, N vary from 1 to 15 to illustrate the efficiency of classification accuracy. When N>15, 
the calculation is quite time-consuming, and the accuracies on three test images are not 
improved obviously. How the OA, AA and Kappa coefficients acted as functions of N is 
shown in Fig. 8 respectively. We can see that variation tendencies are similar of the OA, AA 
and Kappa coefficients curve with different values of N. Concretely, as small N leads to low 
classification accuracy. As N increases, the sparse coding becomes more reliable and the 
classification accuracy increases. 

4.4 Classification comparison with several excellent methods  
To demonstrate the effectiveness of the proposed method, we compare it with those of six 
competing classification algorithms: PSRC[18], JSRM[18], MJSR[21], MASR[21], SC_MK 
[22] and BTC[41]. In PSRC method, the sparse representation classification model is 
employed for classification with the spectral information only. The JSRM, MJSR and MASR 
method utilizes adopt the spatial context with fixed scales, multiple scales and adaptive 
multi-scales respectively. The selected region scales of JSRM is 7×7, and the various region 
scales selected as [3×3, 5×5, 7×7, 9×9, 11×11, 13×13] in  MJSR and MASR, The sparsity level 
K=3 for the MJSR and MASR methods as in original paper. The base superpixel number of 
SC_MK is 800 as preset in[22]. BTC is a pixelwise classifier which uses only the spectral 
features and employs the WLS filters for smothing. The filtering process has two input 
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parameters: degree of smoothing (λ=0.4) and the degree of sharpening (α=0.9) over the 
preserved edges. 

The first test was performed on the Indian Pines image. We repeated 10 Monte Carlo runs to 
verify the average performance and the number of discriminative optimal sampling is set as 
N=10. The classification results of the seven algorithms are shown in Table 7. The 
classification maps with overall accuracies were provided in Fig. 8. 

 
Fig. 8. Classification maps and overall classification accuracy (OA) of comparison methods on India 

image 

  Table 7.  Classification accuracy(%) of comparison methods on India Pines images 
Class PSRC JSRM MJSR MASR SC MK BTC-WSL MSJSRC 

1 39.84 84.55 83.74 94.31 100.00 99.07 94.31 
2 54.29 92.42 93.64 98.19 97.43 93.02 97.20 
3 52.21 92.41 93.44 97.50 98.06 89.91 98.35 
4 41.31 92.64 88.41 96.09 97.87 90.92 94.99 
5 85.36 94.33 94.41 96.24 97.35 94.32 97.70 
6 89.75 93.71 97.92 99.95 100.00 100.00 99.95 
7 74.67 85.33 84.00 100.00 100.00 98.15 88.00 
8 96.28 99.85 99.77 99.85 100.00 100.00 100.00 
9 24.08 31.48 59.26 66.67 100.00 100.00 79.63 
10 69.37 91.70 93.22 95.47 93.48 92.26 97.60 
11 70.88 96.73 97.13 98.98 99.14 99.17 99.25 
12 39.76 92.57 88.23 94.38 97.56 99.19 98.179 
13 91.85 80.98 93.84 98.55 99.73 100.00 98.55 
14 90.48 98.54 99.56 100.00 100.00 98.92 100.00 
15 41.11 91.64 89.15 97.60 97.69 95.48 98.75 
16 88.10 88.49 86.90 96.43 89.28 99.20 96.83 

OA 69.29 94.77 94.16 98.03 98.16 96.43 98.53 
AA 65.58 88.21 91.05 95.64 97.98 96.85 96.20 

Kappa 64.94 94.03 94.31 97.75 97.90 95.91 98.33 
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In Fig. 8, the PSRC displays a noisy class map by a single pixels sparse representation only 
using the spectral information. By combining the spatial information of the HSI, JSRM, MJSR, 
MASR, SC_MK and BTC can exhibit significant smoother appearance in their classification 
results. The JSRM classifier exhibit a comparatively smooth result, and MJSR can improve 
the effect of JSRM with multi-scale local regions information. MASR can detect more 
meaningful complete regions than JSRM and MJSR. SC_MK approach can not only provide a 
smoother appearance but also achieve more accurate estimations in the detailed area. When 
implementing the WLS filter, BTC approcach can obtained better result in most areas. The 
proposed MSJSRC algorithm can also provide a better classification map with multiple 
superpixels constraint of spatial context. From the quantitative results in Table 7, the 
MSJSRC outperforms the comparative approaches in OA, AA and Kappa coefficients. We can 
observe that, MJSRC can obtained perfect accuracy in many areas except failure in some 
detailed areas.  

In the experiments of the Salinas image, we also repeated 10 Monte Carlo runs to verify the 
average performance of the comparison methods, and The number of discriminative optimal 
sampling is set N =10. The classification results of the seven algorithms are shown in Table 8. 
The classification maps with overall accuracies are provided in Fig. 10. As can be seen in Fig. 
9, the PSRC displays noisy class map only uses the spectral information. The performance of 
JSRM and MJSR are not increased remarkably in Vinyard_untrained and Soil area by 
combining the spatial information with big scale region and multi-scales regions. MASR can 
deliver a smoother appearance with adaptive joint sparse than JSRM and MJSR in 
Vinyard_untrained and Soil area. SC_MK and BTC approcach approach provide a smoother 
appearance than PSRC, JSRM and MJSR methods and achieve more accurate estimations in 
the Vinyard_untrained area. Although these two approaches provide smoother appearance, but 
the classification estimations are not as accurate as MASR. The proposed MSJSRC algorithm 
deliver a better classification results than other compared methods in Vinyard_untrained and 
Soil area. From the quantitative results in Table 8, the MSJSRC outperforms the comparative 
approaches in OA, AA and Kappa coefficients. 

 
Fig. 9. Classification maps and overall classification accuracy (OA) of 

comparison methods on Salinas image  
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Table 8.  Classification accuracy(%) of comparison methods on Salinas image 
Class PSRC JSRM MJSR MASR SC MK BTC-WSL MSJSRC 

1 98.59 100.00 100.00 100.00 100.00 100.00 100.00 
2 98.27 99.85 99.81 99.82 99.58 100.00 99.97 
3 96.34 99.16 99.23 99.51 99.46 99.56 100.00 
4 99.02 84.85 97.97 97.79 99.35 99.85 97.97 
5 90.44 95.86 99.60 99.45 98.28 99.81 98.62 
6 99.45 98.94 100.00 100.00 99.62 100.00 100.00 
7 99.39 99.83 99.97 99.98 98.81 100.00 99.94 
8 71.14 86.36 88.82 95.04 86.80 93.57 97.32 
9 97.96 99.99 99.76 99.93 99.59 100.00 99.98 
10 88.41 96.61 95.96 98.72 91.78 98.82 97.60 
11 90.68 99.39 99.66 100.00 96.12 100.00 100.00 
12 99.76 94.62 99.89 99.84 100.00 100.00 99.84 
13 98.51 93.27 99.01 98.35 95.65 99.66 99.34 
14 88.53 98.44 95.42 97.97 93.72 97.87 98.67 
15 61.03 75.75 73.71 94.60 93.19 77.45 93.92 
16 91.58 97.93 98.27 98.41 99.22 100.00 98.52 

OA 86.22 92.56 93.60 97.91 95.86 95.48 98.26 
AA 91.28 95.06 96.70 98.71 97.14 97.91 98.85 

Kappa 84.66 91.71 92.86 97.69 95.39 94.97 98.06 
 
In the experiments of the Pavia image, 10 Monte Carlo runs are repeated to verify the 

average performance of the comparison methods, and the number of discriminative optimal 
sampling is set N=15. The classification results of the seven algorithms are shown in Table 9. 
The classification maps with overall accuracies were provide in Fig. 11.  We can see that the 
joint sparse model display improvements to a different extent than PSRC model, such as 
JSRM, MJSR, MASR and the proposed method. The JSRM classifier improves the visual 
effect than PSRC, MJSR and MASR can deliver of comparatively smooth results with 
multi-scale information of local regions. By combining the spatial information from 
superpixels, SC_MK can display a smoother appearance in its classification results, while the 
BTC approach performs poorly on this data set. By contrast, the MSJSRC algorithm perform 
better than SC_MK and MASR at meadows area. With multiple superpixels constraint of 
spatial context, it also provide a notable smooth classification map and achieve equivalent 
accuracy with SC_MK approach. From the quantitative results in Table 9, the MSJSRC 
approaach outperforms other compared approaches in OA, AA, and Kappa coefficients. 

 
Table 9.  Classification accuracy(%) of comparison methods on Pavia University dataset 

Class PSRC JSRM MJSR MASR SC MK BTC-WSL MSJSRC 
1 60.10 60.22 60.21 75.92 95.59 60.21 87.30 
2 78.43 85.78 89.18 95.88 95.10 99.49 97.56 
3 90.65 93.93 95.14 96.10 98.27 63.53 96.76 
4 90.65 93.93 95.14 96.10 98.27 63.53 96.76 
5 99.36 99.96 99.96 100.00 99.88 100.00 99.96 
6 66.58 86.20 94.57 98.92 97.01 86.33 99.19 
7 87.27 98.98 100.00 100.00 96.64 99.25 100.00 
8 70.19 87.95 95.45 95.84 97.32 53.33 97.87 
9 98.10 74.53 76.54 84.10 100.00 42.90 86.86 

OA 75.23 82.98 87.44 93.28 96.14 86.92 96.16 
AA 80.12 86.23 90.04 93.95 97.29 78.20 96.17 

Kappa 67.97 77.90 83.62 91.13 94.88 82.40 94.89 
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Fig. 10. Classification maps and overall classification accuracy (OA) of 

comparison methods on the University of Pavia image 
 

In this section,  we can observe that the MJSRC method can obtained perfect accuracy in 
many areas except failure in some detailed areas in India pines and Salinas datasets. The 
optimization sampling on multiscale superpixels acquire joint reconstructed region represent 
complete class attribute, and the joint sparse representation classification solving process can 
find the optimal sparse vector and dictionary sparsity. This method solves the blindness of 
spatial information fusion in sparse classification model and outperforms many classification 
algorithms. 

4.4 Effect of sparsity Level for the three test images 
The effect of our method on various sparsity level(K vary from 1 to 15) is shown in Fig. 11. 
The OA, AA and Kappa coefficients show high performance at K=2 of the proposed method 
under different sparsity levels for the three-test HSI images. By increasing the sparsity level 
from 3 to 15, the OA, AA and Kappa generally show a downward trend. So we select K=2 in 
this paper for experiments as aforementioned. 
 

 
Fig. 11. Effect of the sparsity level on three test images of our method. (a) Indian pines; (b) Salinas; 

 (c) University of Pavia. 
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5. Conclusion 
In this paper, we propose a HSI classification method based on the joint sparse representation 
with mixture spatial information of multi-layer superpixels. We extend the similar matrix of 
test pixel by optimally sampling with common and discriminative atoms from multi-layer 
superpixels.The advantages of this algorithm are that it can make full use of the spatial 
consistent information, and fully exploit the discriminative information of meaningful regions 
to develop the sparse coding. The experimental results conducted on publicly data sets show 
that our method has achieved better accuracy compared to several representative 
state-of-the-art methods. In the future, our work will apply kernel learning into joint sparse 
coding to optimize the classification performance. 
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