• 제목/요약/키워드: Spectral reconstruction

검색결과 84건 처리시간 0.038초

Research on a Spectral Reconstruction Method with Noise Tolerance

  • Ye, Yunlong;Zhang, Jianqi;Liu, Delian;Yang, Yixin
    • Current Optics and Photonics
    • /
    • 제5권5호
    • /
    • pp.562-575
    • /
    • 2021
  • As a new type of spectrometer, that based on filters with different transmittance features attracts a lot of attention for its advantages such as small-size, low cost, and simple optical structure. It uses post-processing algorithms to achieve target spectrum reconstruction; therefore, the performance of the spectrometer is severely affected by noise. The influence of noise on the spectral reconstruction results is studied in this paper, and suggestions for solving the spectral reconstruction problem under noisy conditions are given. We first list different spectral reconstruction methods, and through simulations demonstrate that these methods show unsatisfactory performance under noisy conditions. Then we propose to apply the gradient projection for sparse reconstruction (GRSR) algorithm to the spectral reconstruction method. Simulation results show that the proposed method can significantly reduce the influence of noise on the spectral reconstruction process. Meanwhile, the accuracy of the spectral reconstruction results is dramatically improved. Therefore, the practicality of the filter-based spectrometer will be enhanced.

Spectral Reconstruction for High Spectral Resolution in a Static Modulated Fourier-transform Spectrometer

  • Cho, Ju Yong;Lee, Seunghoon;Kim, Hyoungjin;Jang, Won Kweon
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.244-251
    • /
    • 2022
  • We introduce a spectral reconstruction method to enhance the spectral resolution in a static modulated Fourier-transform spectrometer. The optical-path difference and the interferogram in the focal plane, as well as the relationship of the interferogram and the spectrum, are discussed. Additionally, for better spectral reconstruction, applications of phase-error correction and apodization are considered. As a result, the transfer function of the spectrometer is calculated, and then the spectrum is reconstructed based on the relationship between the transfer function and the interferogram. The spectrometer comprises a modified Sagnac interferometer. The spectral reconstruction is conducted with a source with central wave number of 6,451 cm-1 and spectral width of 337 cm-1. In a conventional Fourier-transform method the best spectral resolution is 27 cm-1, but by means of the spectral reconstruction method the spectral resolution improved to 8.7 cm-1, without changing the interferometric structure. Compared to a conventional Fourier-transform method, the spectral width in the reconstructed spectrum is narrower by 20 cm-1, and closer to the reference spectrum. The proposed method allows high performance for static modulated Fourier-transform spectrometers.

Study of Spectral Reflectance Reconstruction Based on an Algorithm for Improved Orthogonal Matching Pursuit

  • Leihong, Zhang;Dong, Liang;Dawei, Zhang;Xiumin, Gao;Xiuhua, Ma
    • Journal of the Optical Society of Korea
    • /
    • 제20권4호
    • /
    • pp.515-523
    • /
    • 2016
  • Spectral reflectance is sparse in space, and while the traditional spectral-reconstruction algorithm does not make full use of this characteristic sparseness, the compressive sensing algorithm can make full use of it. In this paper, on the basis of analyzing compressive sensing based on the orthogonal matching pursuit algorithm, a new algorithm based on the Dice matching criterion is proposed. The Dice similarity coefficient is introduced, to calculate the correlation coefficient of the atoms and the residual error, and is used to select the atoms from a library. The accuracy of Spectral reconstruction based on the pseudo-inverse method, Wiener estimation method, OMP algorithm, and DOMP algorithm is compared by simulation on the MATLAB platform and experimental testing. The result is that spectral-reconstruction accuracy based on the DOMP algorithm is higher than for the other three methods. The root-mean-square error and color difference decreases with an increasing number of principal components. The reconstruction error decreases as the number of iterations increases. Spectral reconstruction based on the DOMP algorithm can improve the accuracy of color-information replication effectively, and high-accuracy color-information reproduction can be realized.

가산잡음환경에서 강인음성인식을 위한 은닉 마르코프 모델 기반 손실 특징 복원 (HMM-based missing feature reconstruction for robust speech recognition in additive noise environments)

  • 조지원;박형민
    • 말소리와 음성과학
    • /
    • 제6권4호
    • /
    • pp.127-132
    • /
    • 2014
  • This paper describes a robust speech recognition technique by reconstructing spectral components mismatched with a training environment. Although the cluster-based reconstruction method can compensate the unreliable components from reliable components in the same spectral vector by assuming an independent, identically distributed Gaussian-mixture process of training spectral vectors, the presented method exploits the temporal dependency of speech to reconstruct the components by introducing a hidden-Markov-model prior which incorporates an internal state transition plausible for an observed spectral vector sequence. The experimental results indicate that the described method can provide temporally consistent reconstruction and further improve recognition performance on average compared to the conventional method.

LDV 스펙트럼 분석을 위한 재생방법의 비교 연구 (A Comparative Study of Reconstruction Methods for LDV Spectral Analysis)

  • 이도환;성형진
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.166-174
    • /
    • 1994
  • A critical evaluation is made of the spectral bias which occurs in the use of a laser doppler velocimeter(LDV). Two processing algorithms are considered for spectral estimates: the sample and hold interpolation method(SH) and the nonuniform Shannon reconstruction technique(SR). Assessment is made of these for varying data densities $(0.05{\le}d.d.{\le}5)$ and turbulence levels(t.i.=30%, 100%). As an improved version of the spectral estimator, the utility of POCS (the projection onto convex sets) has been tested in the present study. This algorithm is found useful to be in the region when $d.d.{\gep}3.$

Improvement of the Spectral Reconstruction Process with Pretreatment of Matrix in Convex Optimization

  • Jiang, Zheng-shuai;Zhao, Xin-yang;Huang, Wei;Yang, Tao
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.322-328
    • /
    • 2021
  • In this paper, a pretreatment method for a matrix in convex optimization is proposed to optimize the spectral reconstruction process of a disordered dispersion spectrometer. Unlike the reconstruction process of traditional spectrometers using Fourier transforms, the reconstruction process of disordered dispersion spectrometers involves solving a large-scale matrix equation. However, since the matrices in the matrix equation are obtained through measurement, they contain uncertainties due to out of band signals, background noise, rounding errors, temperature variations and so on. It is difficult to solve such a matrix equation by using ordinary nonstationary iterative methods, owing to instability problems. Although the smoothing Tikhonov regularization approach has the ability to approximatively solve the matrix equation and reconstruct most simple spectral shapes, it still suffers the limitations of reconstructing complex and irregular spectral shapes that are commonly used to distinguish different elements of detected targets with mixed substances by characteristic spectral peaks. Therefore, we propose a special pretreatment method for a matrix in convex optimization, which has been proved to be useful for reducing the condition number of matrices in the equation. In comparison with the reconstructed spectra gotten by the previous ordinary iterative method, the spectra obtained by the pretreatment method show obvious accuracy.

Structural damage identification with power spectral density transmissibility: numerical and experimental studies

  • Li, Jun;Hao, Hong;Lo, Juin Voon
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.15-40
    • /
    • 2015
  • This paper proposes a structural damage identification approach based on the power spectral density transmissibility (PSDT), which is developed to formulate the relationship between two sets of auto-spectral density functions of output responses. The accuracy of response reconstruction with PSDT is investigated and the damage identification in structures is conducted with measured acceleration responses from the damaged state. Numerical studies on a seven-storey plane frame structure are conducted to investigate the performance of the proposed damage identification approach. The initial finite element model of the structure and measured acceleration measurements from the damaged structure are used for the identification with a dynamic response sensitivity-based model updating method. The simulated damages can be identified accurately without and with a 5% noise effect included in the simulated responses. Experimental studies on a steel plane frame structure in the laboratory are performed to further verify the accuracy of response reconstruction with PSDT and validate the proposed damage identification approach. The locations of the introduced damage are detected accurately and the stiffness reductions in the damaged elements are identified close to the true values. The identification results demonstrated the accuracy of response reconstruction as well as the correctness and efficiency of the proposed damage identification approach.

Reconstruction of surface spectral reflectance using RGB digital color signals

  • 방상택;곽한봉;서봉우;이철희;안석출
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.49-52
    • /
    • 2000
  • The Estimation method for spectral reflectance of the object using five-band and nine-band have been developed. The five-band acquisition are required of five or three times same work for color image acquisition process. To solve the above problems, we proposed a new method that can be reconstructed spectral reflectance of object. The proposed method was to classify same hues corresponding a color stimulus, by using hue angle and chroma vector of a color stimulus. The reconstruction of spectral reflectance was examined by computer simulation, and evaluated by MSE(Mean Square Error) and color difference between the original and reconstructed spectral reflectance.

  • PDF

AN INVERSE HOMOGENEOUS INTERPOLATION PROBLEM FOR V-ORTHOGONAL RATIONAL MATRIX FUNCTIONS

  • Kim, Jeon-Gook
    • 대한수학회지
    • /
    • 제33권4호
    • /
    • pp.717-734
    • /
    • 1996
  • For a scalar rational function, the spectral data consisting of zeros and poles with their respective multiplicities uniquely determines the function up to a nonzero multiplicative factor. But due to the richness of the spectral structure of a rational matrix function, reconstruction of a rational matrix function from a given spectral data is not that simple.

  • PDF

Cloud Removal Using Gaussian Process Regression for Optical Image Reconstruction

  • Park, Soyeon;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제38권4호
    • /
    • pp.327-341
    • /
    • 2022
  • Cloud removal is often required to construct time-series sets of optical images for environmental monitoring. In regression-based cloud removal, the selection of an appropriate regression model and the impact analysis of the input images significantly affect the prediction performance. This study evaluates the potential of Gaussian process (GP) regression for cloud removal and also analyzes the effects of cloud-free optical images and spectral bands on prediction performance. Unlike other machine learning-based regression models, GP regression provides uncertainty information and automatically optimizes hyperparameters. An experiment using Sentinel-2 multi-spectral images was conducted for cloud removal in the two agricultural regions. The prediction performance of GP regression was compared with that of random forest (RF) regression. Various combinations of input images and multi-spectral bands were considered for quantitative evaluations. The experimental results showed that using multi-temporal images with multi-spectral bands as inputs achieved the best prediction accuracy. Highly correlated adjacent multi-spectral bands and temporally correlated multi-temporal images resulted in an improved prediction accuracy. The prediction performance of GP regression was significantly improved in predicting the near-infrared band compared to that of RF regression. Estimating the distribution function of input data in GP regression could reflect the variations in the considered spectral band with a broader range. In particular, GP regression was superior to RF regression for reproducing structural patterns at both sites in terms of structural similarity. In addition, uncertainty information provided by GP regression showed a reasonable similarity to prediction errors for some sub-areas, indicating that uncertainty estimates may be used to measure the prediction result quality. These findings suggest that GP regression could be beneficial for cloud removal and optical image reconstruction. In addition, the impact analysis results of the input images provide guidelines for selecting optimal images for regression-based cloud removal.