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Spectral reflectance is sparse in space, and while the traditional spectral-reconstruction algorithm does 

not make full use of this characteristic sparseness, the compressive sensing algorithm can make full use 

of it. In this paper, on the basis of analyzing compressive sensing based on the orthogonal matching pursuit 

algorithm, a new algorithm based on the Dice matching criterion is proposed. The Dice similarity coefficient 

is introduced, to calculate the correlation coefficient of the atoms and the residual error, and is used to 

select the atoms from a library. The accuracy of Spectral reconstruction based on the pseudo-inverse 

method, Wiener estimation method, OMP algorithm, and DOMP algorithm is compared by simulation on 

the MATLAB platform and experimental testing. The result is that spectral-reconstruction accuracy based 

on the DOMP algorithm is higher than for the other three methods. The root-mean-square error and color 

difference decreases with an increasing number of principal components. The reconstruction error decreases 

as the number of iterations increases. Spectral reconstruction based on the DOMP algorithm can improve 

the accuracy of color-information replication effectively, and high-accuracy color-information reproduction 

can be realized.
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I. INTRODUCTION

Multispectral image-replication technology always uses 

the spectral reflectance instead of RGB or CMYK color values 

for the processing and reproduction of color information, 

to avoid the change in the characteristics of spectral image 

color with external conditions and human vision. An image’s 

color information is affected by external conditions such as 

the light source, but the spectral-reflectance information on 

the surface of the object is not affected by external condi-

tions, and can truly reflect the surface’s color information. 

At present, multispectral imaging systems mainly use principal 

component analysis (PCA) [1, 2], independent component 

analysis (ICA) [3] and Wiener estimation method [4], or 

the pseudo-inverse method [5] to reconstruct the spectral 

reflectance of an image surface, with limited accuracy. 

Compressive sensing theory [6-14] can make full use of 

signal sparsity and reconstruct the signal accurately, under 

the condition that the sampling rate is lower than that of 

the Nyquist requirement. Spectral reflectance is a sparse 

signal, but traditional reconstruction algorithms do not make 

full use of this characteristic sparsity. The compressive 
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sensing algorithm can make full use of the sparsity of the 

spectral reflectance, and thus reduce thenumber of calculations 

and computing time. This paper uses an improved orthogonal 

matching pursuit algorithm to reconstruct the spectral 

reflectance of the image surface. On the basis of analyzing 

the orthogonal matching pursuit algorithm, the correlation 

coefficient of atoms and the residual error are calculated, and 

the Dice similarity coefficient is introduced and used as a 

new principle to select atoms from the atom library. Thus 

it can improve the accuracy of color-information replication 

effectively, and high-accuracy reproduction of color information 

can be realized.

1.1. Compressive Sensing Principle

Compressive sensing theory breaks from traditional Nyquist 

sampling theory, and uses a small number of sample 

points to restore the original signal. Compressive sensing 

theory is based on the sparse signal representation and the 

incoherence of signal measurement. If the coefficient of 

the basis vector of a signal consists of a large number of 

zero elements, the signal is sparse. Most signals in nature 

are not sparse, but can have a sparse representation, after 

some transformation. In some transformation domain, the 

signal is sparse. A finite, one-dimensional discrete signal 

of length N can be expressed as:

sx ψ= (1)

where ψ is the basis vector and S is the weighting 

coefficient of the basis vector. To reconstruct the signal x, 

x it must be measured M (M < N) times. The process can 

be expressed as the following:

sxy φψφ == (2)

where φ  is measurement matrix of dimensions (M × N, 

and y is the linear measurement value of length-N signal 

x. Apparently the dimension of y is far smaller than that 

of the signal x. Eq. (2) has no solution; it is an ill-posed 

problem, and it is difficult to reconstruct the original 

signal. If the original signal x is K-sparse, and the ψ and 

φ  are incoherent, then the signal x can be reconstructed 

accurately with measurement value y by solving the 

optimization problem of l1 norm.

ssyss
1
l

Θφψ === ,minargˆ (3)

In Eq. (3), 1
l

⋅  is the l1 norm of the vector, φψ=Θ  

is the sensing matrix of dimensions M × N, and y is the 

measurement value of the sparse signal x by the measure-

ment matrix φ . 

II. SPECTRAL REFLECTANCE RECONSTRUCTION 

BASED ON THE IMPROVED OMP ALGORITHM

2.1. Spectral Reflectance Reconstruction Based on the 

Pseudo-inverse Method

When the spectral imaging system operates, the output 

image channel value is affected by the relative spectral 

energy distribution of the standard lighting l(λ ), the spectral 

reflectance r(λ ) of the image, the sensitivity of the camera 

s(λ ), and the spectral transmittance of the color filter τ k(λ ). 

The process is shown in Eq. (4):

( ) ( ) ( ) ( ) λλτλλλ
λ

λ

drlsu
kk ∫=

max

min

(4)

where k is the channel number and uk is the output image 

signal of channel k of the spectral imaging system. Eq. (4) 

can be expressed as a discrete matrix:

rMu
T

k
= (5)

where M
T 

represents the spectral response matrix. Q =

M(M
T
M)

-1
 can be obtained by the least-squares method 

min ∥∥
, and then the spectral reflectance can be 

obtained by the following formula:

k

1T
uMMMr

−= )( (6)

2.2. The Improved OMP Algorithm

The OMP (orthogonal matching pursuit) algorithm uses 

iterative-algorithm thought to reconstruct the signal. In each 

iteration, the correlation coefficient is calculated by seeking 

the absolute value of the inner product of each atom 

among atom libraries (the sensing matrix ) and the 

residual error rt, as shown in Eq. (7). 

{ }Njr
tjjj

⋅⋅⋅=== ,2,1,,Θμμμ (7)

 

Where, atom means a primitive component of the reconstruction. 

Then, through the correlation coefficient µ, from the 

library the atom positions that best matched the signal are 

found. The index set is updated, and from the atom library 

the column that best matched the residual error is chosen 

to constitute a new matrix 




, the support set. Through 

the support set 




 and the measured values y, the estimated 

value of the sparse signal S is obtained by the least-squares 

method. After such iteration, the final reasonable sparse 

coefficient   is obtained.

2
sys Θ−= minargˆ (8)  
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Unlike the previous OMP algorithm, in which the correlation 

coefficient of each atom and the residual error is computed, 

an improved OMP algorithm called the DOMP algorithm 

(DOMP is short for an improved orthogonal matching pursuit 

algorithm, based on the matching criterion of the Dice 

coefficient.) introduces the Dice similarity coefficient, which 

is a new principle for selecting an atom from the atom 

library. For any two vectors α , β  the Dice coefficient is:

∑ ∑

∑

= =

=

+
=

n
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n
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i

n
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ii
2

Dice

βα

βα
βα ),( (9)

where α = (α 1, α 2, …, α n), β = (β 1, β 2, …, β n). Eq. (9) 

represents the Dice matching coefficient of βα, . Instead 

of the geometric mean, the Dice coefficient criterion uses 

in the denominator the arithmetic mean values of the sum 

of squares of each component of each vector. Because the 

arithmetic mean values can highlight the important components 

of the vectors effectively and accurately, the atoms that 

best match the residual signal can be accurately selected 

from the sparse dictionary, using the Dice coefficient criterion. 

The principle of selecting the optimal atom is shown as 


 arg max ⋯


, where λ t is the index 

position of selected atoms in the atom library, and 


  

represents the Dice similarity coefficient of residual error 

and each atom. Then Tt = Tt-1∪J0; Introducing the Dice 

coefficient in DOMP algorithm allows the updated modulus 

of residual error to be small, and the larger coefficient of 

a vector to be more prominent; then it can pinpoint the 

important parts of the residual error rapidly and accurately 

via the DOMP algorithm.

In the OMP algorithm, when using inner product to measure 

the similarity criterion, the important part of the signal has 

not been significantly enlarged. Thus how to choose atoms 

better matching the residual signal is studied in this paper, 

and optimization of the support set is realized by introducing 

the Dice coefficient matching measurement standards, 

instead of inner product standards. In Eq. (9), the Dice 

coefficient can make full use of each element of the vector 

to calculate the correlation, and the role of each element 

of the vector when calculating the correlation is magnified. 

The important role of each element in the selection of atoms 

is reflected, so the performance of the DOMP algorithm is 

superior to that of the OMP algorithm.

2.3. Spectral Reflectance Reconstruction Based on DOMP 

Algorithm

The spectral-reflectance reconstruction based on the 

DOMP algorithm uses a principal component analysis algorithm 

to obtain a basis function vector from the training samples, 

and sets the first three principal components to be the basis 

function vector for spectral-reflectance reconstruction of 

the test sample. According to the smoothness of the spectral 

reflectance, r is linearly combined with a feature vector of 

dimension J. If the spectral reflectance r is evenly sampled 

N times, the linear model can be expressed as:

[ ][ ]T
J21J21

aaabbbBar ,,,,,, ⋅⋅⋅⋅⋅⋅== (10)

r is an N×1-dimensional spectral reflectance vector, B is 

an N×J-dimensional basis function vector matrix, and a is 

a J×1-dimensional coefficient of the basis function vector. 

According to the above analysis, Eq. (5) can be expressed 

as:

BaMrMu
TT

k
== (11)

uk is a K-dimensional vector; because K < N, the formula 

(5) does not have a definite solution. r can be expressed 

as r = Ba; then the r is a J-sparse vector. If J < K, Eq. (5) 

will have a definite solution. B = (b1, b2, b3) is obtained by 

the principal component analysis algorithm, the coefficient 

a is obtained by the DOMP algorithm, and the spectral 

reflectance of test samples   is reconstructed by the 

DOMP algorithm.

{ }
2

ˆ argmin T

a k
r B u M Ba= − (12)

  represents the reconstructed spectral reflectance, while 

uk represents the channel response value of the test sample.

In the sensing process, the Dice coefficient is introduced 

to change the matching criterion for sparse dictionary atoms 

and the residual signal, and compared with the OMP algorithm, 

and then the support set is optimized. Therefore, the atoms 

that best match the residual error can be selected from the 

sparse basis library accurately. The spectral reconstruction 

flowchart based on the DOMP algorithm is shown in Fig. 1.

First, spectral reflectance is processed by principal component 

analysis to obtain a sparse basis B. Then a series of initial 

values are given, and the sparse coefficient a is returned, 

based on the DOMP algorithm. Finally, the spectral reflectance 
  is reconstructed using Eq. (12).

III. SIMULATIONS

Spectral reflectance reconstruction based on the compressive 

sensing algorithm is simulated in the MATLAB platform. 

The standard color card Color Checker Rendition Chart (24) 

from the GretagMacbeth company is selected as the training 

sample, and the multispectral reflectance data “young-girl” 

from the Spectral Color Research Laboratory in the University 

of Eastern Finland [15] are used to perform the simulation. 

Standard colorimetric observer spectral tristimulus values 

of CIE1931 are obtained by multiplying the spectral reflectance 
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FIG. 1. The flowchart for spectral-reflectance reconstruction.

(a) (b) (c) (d)

FIG. 2. The RGB image: (a) RGB image, (b) R channel, (c) G 

channel, (d) B channel.

of multispectral images by the spectral energy distribution 

matrix of the standard illuminant D50 and CIE1931 standard 

colorimetric observer spectral matching function. Then, through 

the known color-space conversion matrix, the CIE1931 

standard colorimetric observer spectral tristimulus value is 

transformed to the corresponding RGB color space value. 

Finally, the RGB image of the test sample is obtained. 

The RGB image and three channel values of the image are 

shown in Fig. 2. The spectral wavelength range is 380-780 

nm, the internal is 5 nm, and the spectral reflectance is 

composed of an 81-dimensional vector.

The process of spectral reflectance reconstruction for 

“young-girl” is as follows: (1) The basis function vector B =

(b1, b2, b3) is obtained using the principal component analysis 

algorithm for the spectral reflectance of the training sample 

(RC24 color card), and B is used as the basis function vector 

for spectral-reflectance reconstruction. (2) The transforming 

matrix M
T

 in Eq. (11) consists of the standard illuminant 

D50 spectral energy distribution matrix, the CIE1931 standard 

colorimetric observer spectral matching function, and the 

matrix for converting CIE1931XYZ color space to RGB 

color space. The RGB channel response value of “young-girl” 

is obtained using Eq. (11). (3) Based on the obtained 

channel response values uk for the “young-girl” image, and 

the first three principal components of the training sample 
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TABLE 1. Reconstruction error and color difference for the four methods

methods
RMSE ΔE

Min Mean Max Min Mean Max

Pinv 0.0045 0.0090 0.3525 1.2965 1.4397 2.7858

Wiener 0.0010 0.0062 0.2050 0.9850 1.6718 2.3755

OMP 0.00092 0.0050 0.0915 0.8350 1.3951 1.8046

DOMP 0.00035 0.0031 0.0735 0.5135 1.3068 1.6752

FIG. 3. The reconstructed spectral reflectance from the four 

algorithms.

RC24 color card, the sparse coefficient  of spectral 

reflectance is obtained by the DOMP algorithm. Then the 

spectral reflectance of the “young-girl” image is reconstructed 

using Eq. (12).

The root-mean-square error (RMSE) [16] is used to 

evaluate the accuracy of spectral reflectance reconstruction, 

where the original spectral reflectance of each pixel is ri, 

the reconstructed spectral reflectance of each pixel is 

, 

and the RMSE is as in Eq. (13): 

)ˆ(∑
=

−=
n

1i

ii
rr

n

1
RMSE (13)

The color difference of the reconstructed spectral reflectance 

is evaluated using the CIE1976 (ΔEab) color difference 

formula [17], for which the coordinate values of the test 

sample and the reconstructed test sample are (L1, a1, b1) 

and (L2, a2, b2) respectively, and the CIE1976 color difference 

formula is as in Eq. (14):

[ ] 2
1

2

12

2

12

2

12ab
bbaaLLE )()()( −+−+−=Δ (14)

The L component represents the brightness, the a component 

represents the change of chromatic value from green to 

red, and the b component represents the change of chromatic 

value from blue to yellow.

3.1. Results and Analysis of Apectral-reflectance Recon-

struction Based on the Different Algorithms

Spectral reflectance is reconstructed by different algorithms, 

based on the pseudo-inverse algorithm (Pinv), Wiener estimation 

algorithm (Wiener), orthogonal matching pursuit algorithm 

(OMP), and improved OMP algorithm (DOMP), and it is 

tested under the standard illuminant D50. The reconstruction 

errors and color differences are shown in Table 1. The 

following can be seen from Table 1: (1) The accuracy of 

the reconstructed spectral reflectance based on the DOMP 

algorithm is superior to that of the other three algorithms. 

The RMSE of the reconstructed spectral reflectance is 

0.0031, and the maximum value is 0.0735, both less than 

for the other three methods. (2) The average value of the 

color difference is 1.3068, and the maximum value is 1.6752, 

both less than for the other algorithms. This is within the 

range of human visual experience. 

As it is shown in Fig. 3, we can conclude: (1) The 

accuracy of reconstructed spectral reflectance based on the 

DOMP algorithm is better than that of the other three kinds 

of algorithms. (2) Because the spectral reflectance is sparse 

in its space, the compressive sensing algorithm makes full 

use of this sparsity, and the accuracy of spectral-reflectance 

reconstruction for the compressive sensing algorithm based 

on principal component analysis is higher than for the 

traditional algorithm. The compressive sensing algorithm based 

on principal component analysis reduces the computational 

complexity of the data, and improves the accuracy of recon-

struction. (3) In the DOMP algorithm, the Dice coefficient 

is introduced into the matching criterion between atoms 

and residual error; thus the optimal atom is matched more 

quickly and accurately, and the reconstruction accuracy is 

higher than that of the OMP algorithm.

3.2. Effect of the Number of Principal Components on 

the Accuracy of Spectral-reflectance Reconstruction

The number of principal components of spectral reflectance 

for the training sample also can affect the spectral-reconstruction 

accuracy of the test sample. The eigenvalues of the first 

seven basis function vectors are obtained using the principal 

component analysis algorithm, and its cumulative contribution 

is calculated by Eq. (15). TV
P
 represents the cumulative 

contribution of the P eigenvalues, and Wi represents the 

eigenvalues of the ith principal component.
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TABLE 2. Eigenvalues and cumulative contribution of the 

principal components of the RC color card

number Eigenvalue contribution

1 3.0741 0.6813

2 1.0051 0.9040

3 0.3135 0.9735

4 0.0616 0.9872

5 0.0277 0.9933

6 0.0135 0.9963

7 0.0069 0.9978
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FIG. 4. The relationship between reconstruction error and the 

number of principal components.
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FIG. 5. The relationship between color difference and the 

number of principal components.
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FIG. 6. The relationship of reconstruction error to the number 

of iterations.
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As it is shown in Table 2, we can conclude: (1) The 

cumulative contribution increases with the number of principal 

components; when the number of principal components 

reaches a certain value, the cumulative contribution changes 

slowly. (2) The cumulative contribution of the first three 

eigenvalues is more than 97%, and the that of the first 

seven is more than 99.7%. When the number of principal 

components is greater than 3, the growth of cumulative 

contribution levels off.

The accuracy of spectral-reflectance reconstruction is 

obtained using Eqs. (13) and (14). The relationship between 

accuracy of spectral-reflectance reconstruction and the 

number of principal components is shown in Figs. 4 and 

5, from which we can conclude: (1) The root-mean-square 

error and color difference decrease with increasing number 

of principal components, so the selection of the number of 

principal component has some influence on the spectral- 

reflectance reconstruction. (2) The performance of the DOMP 

algorithm is better than that of the OMP algorithm. When 

the number of principal components is the same, the recon-

struction error and color difference based on the DOMP 

algorithm are less than those of the OMP algorithm.

3.3. Effect of the Number of Iterations on Spectral-

reflectance Reconstruction

The number of iterations affects the accuracy of spectral-

reflectance reconstruction based on DOMP and OMP algorithms. 

The relationship between the root-mean-square error and 

the number of iterations is shown in Fig. 6, from which we 

can conclude: (1) The root-mean-square error of reconstruction 

decreases with increasing number of iterations; when the 

number of iterations increases to a certain value, the spectral-

reconstruction error changes slowly. (2) For a constant 

number of iterations, the reconstruction error based on the 

DOMP algorithm is less than that of the OMP algorithm.

IV. EXPERIMENTAL RESULTS AND 

ANALYSIS

4.1. Data Acquisition

This paper constructs a set of array camera system of 

multispectral imaging and the array camera uses three colored 
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FIG. 7. Flowchart for spectral imaging.

FIG. 8. Image of the RC-24 color card.

FIG. 9. The spectrum of a pixel.

CCD digital camera and three filters to compose a multispectral 

digital camera. The output image channel value is shown 

as Eq. (4), and the process of spectral imaging is shown 

in Fig. 7. The ENVI software is used to process the 

obtained spectral image. Spectral reflectance is measured 

by an Eyeone spectrophotometer, under conditions of the 

CIE standard D65 light source and 2
0
 field of view. The 

conversion matrix M
T
 is obtained from the channel value 

and the spectral reflectance of the RC24 color card. The 

test sample selects ColorChecker SG (140), and its channel 

response value is obtained by the spectral imaging system; 

then the spectral reflectance of each pixel of the SG color 

card is reconstructed by combining the conversion matrix 

M
T
 and the channel response value. The reconstructed spectral 

reflectance is compared to the original. The original image 

of the RC24 color card is shown in Fig. 8, and the 

absolute spectrum (multichannel response values) of one 

pixel of the RC24 color card is shown in Fig. 9.

4.2. Spectral-reflectance Reconstruction Based on Different 

Algorithms

There are six channel-response values for each sample 

in our experiment, which is different from the three channel-

response values obtained by simulation. To make the results 

more adequate, there are some results comparison by experi-

ment. A pixel of the test sample is selected, and the accuracy 

of spectral reconstruction based on the pseudo-inverse 

method, Wiener estimation method, OMP algorithm, and 

DOMP algorithm is compared. The root-mean-square errors 

and color differences of spectral reflectance based on different 

algorithms versus experiment are shown in Table 3. From 

Table 3 we can conclude: (1) The accuracy of spectral-

reflectance reconstruction based on the DOMP algorithm is 

superior to that based on the other methods, and the root-

mean-square error based on DOMP is 0.0010, which is 

lower than that for the other three algorithms. (2) The 

color difference by DOMP is 1.57, which is much smaller 

than that by the other  algorithms. The reconstruction of 

spectral reflectance based on the DOMP algorithm can 

greatly improve the accuracy of color reappearance. (3) 

The computational time for the DOMP algorithm is 3.70 

seconds, which is less than that of the other three algorithms. 

The important parts of the residual error are pinpointed 

rapidly and accurately by the DOMP algorithm, so the 

computational time is less by DOMP than by OMP.

A pixel of the test sample SG color card is selected, 

and its spectral reflectance is reconstructed by the Wiener 

estimation method, pseudo-inverse method, OMP algorithm, 

and DOMP algorithm. As it is seen in Fig. 10, we can 

conclude: (1) The accuracy of spectral-reflectance recon-

struction based on the DOMP algorithm is greater than 

that of the other three kinds of algorithms. For the wave-

length range of  about 580 nm to 700 nm, the reconstruction 

effect is not obvious, because there is some influence of 

system noise and the external environment. (2) The pseudo-

inverse method uses the least-squares method to reconstruct 

the spectral reflectance; the reconstruction accuracy is affected 

by the modulus of the observed value, and the calculated 

amount increases with the increase of the observed value. 
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TABLE 3. The reconstruction accuracy of the four algorithms

Method RMSE ΔE Time (s)

Pinv 0.0343 2.35 18.20

Wiener 0.0245 1.97 13.70

OMP 0.0087 2.05 8.40

DOMP 0.0010 1.57 3.70

FIG. 10. Spectral-reflectance reconstruction curves for the 

different algorithms.

Thus when the number of observations is limited, it is difficult 

to accurately reconstruct the reflectance of the image’s 

surface. 

V. CONCLUSION 

The traditional algorithm for spectral reconstruction uses 

the pseudo-inverse model to reconstruct the spectral reflectance 

of a test sample, and the accuracy of reconstruction is not 

high. The spectral reflectance is sparse in space, but the 

traditional spectral-reconstruction algorithm does not make 

full use of this sparsity. The compressive sensing algorithm, 

however, can make full use of the sparsity of the spectral 

reflectance. The computing time is reduced, as is the amount 

of calculation. Therefore, this paper proposes a new com-

pressive sensing algorithm for reconstructing spectral reflectance. 

In this paper, first the dimension of the spectral reflectance 

is reduced through principal component analysis, and then 

the basis function vector of spectral reflectance is obtained. 

Second, on the basis of analyzing the orthogonal matching 

pursuit algorithm, a new algorithm based on the Dice 

matching criterion is proposed. The Dice similarity coefficient 

is introduced to calculate the correlation coefficient of an 

atom and the residual error, and used to select atoms from 

an atom library. Then the sparse coefficient is obtained. 

Finally, the spectral reflectance of the test sample is recon-

structed through the first three principal components and 

the sparse coefficient. 

In this paper, on the basis of analyzing compressive 

sensing based on the orthogonal matching pursuit algorithm, 

a new algorithm based on the Dice matching criterion is 

proposed. The accuracy of spectral reconstruction based on 

the pseudo-inverse method, the Wiener estimation method, 

the OMP algorithm, and the DOMP algorithm is compared 

via simulation on the MATLAB platform, and via experiment. 

The result is that spectral-reconstruction accuracy based on 

the DOMP algorithm is higher than that based on the other 

three algorithms. The number of principal components of 

spectral reflectance for the training sample obtained by the 

PCA method can affect the spectral-reconstruction accuracy 

for the test sample. The root-mean-square error and color 

difference decreases with increasing number of principal 

components. The number of iterations also affects the accuracy 

of spectral-reflectance reconstruction, and reconstruction 

error decreases with increasing number of iterations.

Spectral-reflectance reconstruction based on the DOMP 

algorithm can effectively improve the accuracy of color-infor-

mation replication, and high-accuracy color-information reproduction 

can be realized.
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