• 제목/요약/키워드: Spectral imaging

Search Result 393, Processing Time 0.03 seconds

Inference of Chromospheric Plasma Parameters on the Sun from Strong Absorption Lines

  • Chae, Jongchul;Madjarska, Maria S.;Kwak, Hannah;Cho, Kyuhyoun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.44.4-45
    • /
    • 2020
  • The solar chromosphere can be observed well through strong absorption lines. We infer the physical parameters of chromospheric plasmas from these lines using a multilayer spectral inversion. This is a new technique of spectral inversion. We assume that the atmosphere consists of a finite number of layers. In each layer the absorption profile is constant and the source function is allowed to vary with optical depth. Specifically, we consider a three-layer model of radiative transfer where the lowest layer is identified with the photosphere and the two upper layers are identified with the chromosphere. This three-layer model is fully specified by 13 parameters. Four parameters can be fixed to prescribed values, and one parameter can be determined from the analysis of a satellite photospheric line. The remaining eight parameters are determined from a constrained least-squares fitting. We applied the multilayer spectral inversion to the spectral data of the Hα and the Ca II 854.21 nm lines taken in a quiet region by the Fast Imaging Solar Spectrograph (FISS) of the Goode Solar Telescope (GST). We find that our model successfully fits most of the observed profiles and produces regular maps of the model parameters. We conclude that our multilayer inversion is useful to infer chromospheric plasma parameters on the Sun.

  • PDF

Application and Development of Integration Technique to Generate Land-cover and Soil Moisture Map Using High Resolution Optical and SAR images

  • Kim Ji-Eun;Park Sang-Eun;Kim Duk-jin;Kim Jun-su;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.497-500
    • /
    • 2005
  • Research and development of remote sensing technique is necessary so that more accurate and extensive information may be obtained. To achieve this goal, the synthesized technique which integrates the high resolution optic and SAR image, and topographical information was examined to investigate the quantitative/qualitative characteristics of the Earth's surface environment. For this purpose, high-precision DEMs of Jeju-Island was generated and data fusion algorithm was developed in order to integrate the multi-spectral optic and polarimetric SAR image. Three dimensional land-cover and two dimensional soil moisture maps were generated conclusively so as to investigate the Earth's surface environments and extract the geophysical parameters.

  • PDF

Optomechanical Design of a Compact Imaging Spectrometer for a Microsatellite STSAT3

  • Lee, Jun-Ho;Lee, Chi-Weon;Kim, Yong-Min;Kim, Jae-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • A compact imaging spectrometer (COMIS) is currently under development for use in the STSAT3 microsatellite. COMIS images the Earth's surface and atmosphere with ground sampling distances of ${\sim}30m$ in the $18{\sim}62$ spectral bands ($4.0{\sim}1.05{\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. These are designed into a single assembly with dimensions of 35(L) $\times$ 20(W) $\times$ 12(H) $cm^3$ and a mass of 4.3 kg. Optomechanical design efforts are focused on manufacturing ease, alignment, assembly, testing and improved robustness in space environments. Finite element analysis demonstrates that COMIS will survive in launch and space environments and perform the system modulation transfer function (MTF) in excess of 0.29 at the Nyquist frequency of the CCD detector (38.5 lines-per-mm).

Role of endoscopy in gastroesophageal reflux disease

  • Daniel Martin Simadibrata;Elvira Lesmana;Ronnie Fass
    • Clinical Endoscopy
    • /
    • v.56 no.6
    • /
    • pp.681-692
    • /
    • 2023
  • In general, gastroesophageal reflux disease (GERD) is diagnosed clinically based on typical symptoms and/or response to proton pump inhibitor treatment. Upper gastrointestinal endoscopy is reserved for patients presenting with alarm symptoms, such as dysphagia, odynophagia, significant weight loss, gastrointestinal bleeding, or anorexia; those who meet the criteria for Barrett's esophagus screening; those who report a lack or partial response to proton pump inhibitor treatment; and those with prior endoscopic or surgical anti-reflux interventions. Newer endoscopic techniques are primarily used to increase diagnostic yield and provide an alternative to medical or surgical treatment for GERD. The available endoscopic modalities for the diagnosis of GERD include conventional endoscopy with white-light imaging, high-resolution and high-magnification endoscopy, chromoendoscopy, image-enhanced endoscopy (narrow-band imaging, I- SCAN, flexible spectral imaging color enhancement, blue laser imaging, and linked color imaging), and confocal laser endomicroscopy. Endoscopic techniques for treating GERD include esophageal radiofrequency energy delivery/Stretta procedure, transoral incisionless fundoplication, and endoscopic full-thickness plication. Other novel techniques include anti-reflux mucosectomy, peroral endoscopic cardiac constriction, endoscopic submucosal dissection, and endoscopic band ligation. Currently, many of the new endoscopic techniques are not widely available, and their use is limited to centers of excellence.

A Study on the Method of Generating RPC for KOMPSAT-2 MSC Pre-Processing System (KOMPSAT-2 MSC 전처리시스템을 위한 RPC(Rational Polynomial Coefficient)생성 기법에 관한 연구)

  • 서두천;임효숙
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.417-422
    • /
    • 2003
  • The KOMPSAT-2 MSC(Multi-Spectral Camera), with high spatial resolution, is currently under development and will be launched in the end of 2004. A sensor model relates a 3-D ground position to the corresponding 2-D image position and describes the imaging geometry that is necessary to reconstruct the physical imaging process. The Rational Function Model (RFM) has been considered as a generic sensor model. form. The RFM is technically applicable to all types of sensors such as frame, pushbroom, whiskbroom and SAR etc. With the increasing availability of the new generation imaging sensors, accurate and fast rectification of digital imagery using a generic sensor model becomes of great interest to the user community. This paper describes the procedure to generation of the RPC (Rational Polynomial Coefficients) for KOMPSAT-2 MSC.

  • PDF

Camera Controller in MSC(Multi-Spectral Camera)

  • Kim, Young-Sun;Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1081-1083
    • /
    • 2003
  • The CC's main objective is to manage and control the various operation of the MSC camera. The CC has capability to control the various camera operation modes such as INIT mode, WAIT mode, STANDBY mode, READY IMAGING, DEFAULT READY IMAGING, IBIT and IMAGING mode as well as to manage the interface of the PMU. This paper also shows not only the design concepts in the both of the hardware and the operational software, but also the implementation results for the various CC functions.

  • PDF

Current and Future Technologies for a Gastrointestinal Endoscopy (소화기 내시경의 기술 현황과 전망)

  • Chee, Young-Joon;Woo, Jih-Wan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.335-343
    • /
    • 2010
  • This article presents a review of technologies for an endoscope. The classification according to the clinical applications and the imaging modalities are summarized. The major parts are focused on describing the gastrointestinal endoscope's structures and mechanisms. The details of the image enhanced endoscopic techniques, such as NBI (narrow band imaging), OCT (optical coherence tomography), and EUS (endoscopic ultrasound), are also explained. Finally, the trend of NOTES (natural orifice transluminal endoscopic surgery) which is new fusion technology in the field of endoscopic diagnosis and surgery is introduced.

Plasmonic Color Filter with Robustness Against Cross Talk for Compact Imaging Applications

  • Cho, Hyo Jong;Do, Yun Seon
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2020
  • In high resolution imaging devices, smaller aperture in the color filter causes cross talk which provides incorrect information. Plasmonic color filters (PCFs) have been reported as an alternative of the conventional color resist based-color filter (CRCF) and many studies on PCFs demonstrated the filtering function by PCFs with a sub-micron size. In this work, we investigated the cross talk performance of PCFs compared to CRCFs. The effect of cross talk over distance from the filter were measured for each filter. Despite poorer spectral filtering characteristics, PCFs were more robust against cross talk than CRCFs. Also, the further away from the filter, the more cross talk appeared. As a result, PCFs showed less cross talk than CRCFs at about 82% of the results measured at a distance of 2~10 ㎛. This study will help to make practical use of PCFs in high-resolution imaging applications.

Velocity Vector Imaging (속도 벡터 영상 방법)

  • Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.11-27
    • /
    • 2010
  • Nowadays, ultrasound Doppler imaging is widely used in assessing cardiovascular functions in the human body. However, a major drawback of ultrasonic Doppler methods is that they can provide information on blood flow velocity along the ultrasound beam propagation direction only. Thus, the blood flow velocity is estimated differently depending on the angle between the ultrasound beam and the flow direction. In order to overcome this limitation, there have been many researches devoted to estimating both axial and lateral velocities. The purpose of this article is to survey various two-dimensional velocity estimation methods in the context of Doppler imaging. Some velocity vector estimation methods can also be applied to determine tissue motion as required in elastography. The discussion is mainly concerned with the case of estimating a two-dimensional in-plane velocity vector involving the axial and lateral directions.

Implementation of Cost-effective Common Path Spectral Domain Free-hand Scanning OCT System

  • Shoujing Guo;Xuan Liu;Jin U. Kang
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.176-182
    • /
    • 2023
  • Optical coherence tomography (OCT) is being developed to guide various ophthalmic surgical procedures. However, the high cost of the intraoperative OCT system limits its availability mostly to the largest hospitals and healthcare systems. In this paper, we present a design and evaluation of a low-cost intraoperative common-path free-hand scanning OCT system. The lensed fiber imaging probe is designed and fabricated for intraocular use and the free-hand scanning algorithm that could operate at a low scanning speed was developed. Since the system operates at low frequencies, the cost of the overall system is significantly lower than other commercial intraoperative OCT systems. The assembled system is characterized and shows that it meets the design specifications. The handheld OCT imaging probe is tested on multilayer tape phantom and ex-vivo porcine eyes. The results show that the system could be used as an intraoperative intraocular OCT imaging device.