DOI QR코드

DOI QR Code

Plasmonic Color Filter with Robustness Against Cross Talk for Compact Imaging Applications

  • Cho, Hyo Jong (School of Electronics Engineering, Kyungpook National University) ;
  • Do, Yun Seon (School of Electronics Engineering, Kyungpook National University)
  • 투고 : 2019.11.07
  • 심사 : 2019.12.05
  • 발행 : 2020.02.25

초록

In high resolution imaging devices, smaller aperture in the color filter causes cross talk which provides incorrect information. Plasmonic color filters (PCFs) have been reported as an alternative of the conventional color resist based-color filter (CRCF) and many studies on PCFs demonstrated the filtering function by PCFs with a sub-micron size. In this work, we investigated the cross talk performance of PCFs compared to CRCFs. The effect of cross talk over distance from the filter were measured for each filter. Despite poorer spectral filtering characteristics, PCFs were more robust against cross talk than CRCFs. Also, the further away from the filter, the more cross talk appeared. As a result, PCFs showed less cross talk than CRCFs at about 82% of the results measured at a distance of 2~10 ㎛. This study will help to make practical use of PCFs in high-resolution imaging applications.

키워드

참고문헌

  1. P. A. H. Hart, T. Va 'T Hof, and F. M. Klaassen, "Device down scaling and expected circuit performance," IEEE J. Solid-State Circuits 14, 343-357 (1979). https://doi.org/10.1109/JSSC.1979.1051184
  2. M. Mori, M. Katsuno, S. Kasuga, T. Murata, and T. Yamaguchi, "1/4-inch 2-mpixel MOS image sensor with 1.75 transistors/pixel," IEEE J. Solid-State Circuits 39, 2426-2430 (2004). https://doi.org/10.1109/JSSC.2004.837028
  3. A. P. Chandrakasan and R. W. Brodersen, "Minimizing power consumption in digital CMOS circuits," Proc. IEEE 83, 498-523 (1995). https://doi.org/10.1109/5.371964
  4. E. J. Nowak, I. Aller, T. Ludwing, K. Kim, R. V. Joshi, C. T. Chuang, K. Bernstein, and R. Puri, "Turning silicon on its edge [double gate CMOS/FinFET technology]," IEEE Circuits Devices Mag. 20, 20-31 (2004). https://doi.org/10.1109/MCD.2004.1263404
  5. G. Agranov, V. Berezin, and R. H. Tsai, "Crosstalk and microlens study in a color CMOS image sensor," IEEE Trans. Electron Devices 50, 4-11 (2003).
  6. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, USA, 2019), Vol. 2, Chapter 4.
  7. L. Frey, P. Parrein, J. Raby, C. Pelle, D. Herault, M. Marty, and J. Michailos, "Color filters including infrared cut-off integrated on CMOS image sensor," Opt. Express 19, 13073-13080 (2011). https://doi.org/10.1364/OE.19.013073
  8. S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, "Efficient colour splitters for high-pixel-density image sensors," Nat. Photonics 7, 240-246 (2013). https://doi.org/10.1038/nphoton.2012.345
  9. S. Yokogawa, S. P. Burgos, and H. A. Atwater, "Plasmonic color filters for CMOS image sensor applications," Nano Lett. 12, 4349-4354 (2012). https://doi.org/10.1021/nl302110z
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
  11. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, "Plasmonic color palettes for photorealistic printing with aluminum nanostructures," Nano Lett. 14, 4023-4029 (2014). https://doi.org/10.1021/nl501460x
  12. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Express 15, 15457-15463 (2007). https://doi.org/10.1364/OE.15.015457
  13. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). https://doi.org/10.1038/nature05350
  14. T. W. Ebbesen, H. J. Lezaec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). https://doi.org/10.1038/35570
  15. Y. S. Do, "A highly reproducible fabrication process for large-area plasmonic filters for optical applications," IEEE Access 6, 68961-68967 (2018). https://doi.org/10.1109/access.2018.2880456
  16. Y. S. Do and K. C. Choi, "Poly-periodic hole arrays for angle-invariant plasmonic filters," Opt. Lett. 40, 3873-3876 (2015). https://doi.org/10.1364/OL.40.003873
  17. S. P. Chang, Y. S. Do, J. W. Kim, B. Y. Hwang, J. N. Choi, B. H. Choi, Y. H. Lee, K. C. Cho, and B. K. Ju, "Photo-insensitive amorphous oxide thin-film transistor integrated with a plasmonic filter for transparent electronics," Adv. Funct. Mater. 24, 3482-3487 (2014). https://doi.org/10.1002/adfm.201304114
  18. Y. S. Do and K. C. Choi, "Quantitative interpretation of extraordinary optical transmission affected by dielectric overlayers," J. Opt. 16, 065005-065010 (2014). https://doi.org/10.1088/2040-8986/16/6/065005
  19. Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, "Plasmonic color filter and its fabrication method for large area applications," Adv. Opt. Mater. 1, 133-138 (2013). https://doi.org/10.1002/adom.201200021
  20. Y. S. Do and K. C. Choi, "Matching surface plasmon modes in symmetry-broken structures for nanohole-based plasmonic color filter," IEEE Photonics Technol. Lett. 25, 2454-2457 (2013). https://doi.org/10.1109/LPT.2013.2288274
  21. B. E. Bayer, "Color imaging array," U.S. Patent 3971065 (1976).
  22. Lumerical Solution Inc., Lumerical FDTD solution (FDTD Solution, Jul. 29, 2019), https://www.lumerical.com/products/fdtd/ (Aug. 5, 2019).
  23. Y. Yu, Q. Chen, L. Wen, X. Hu, and H. Zhang, "Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters," Opt. Express 23, 21994-22003 (2015). https://doi.org/10.1364/OE.23.021994
  24. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). https://doi.org/10.1103/PhysRevB.58.6779