• Title/Summary/Keyword: Spectral gradient

Search Result 64, Processing Time 0.03 seconds

A CLASS OF NONMONOTONE SPECTRAL MEMORY GRADIENT METHOD

  • Yu, Zhensheng;Zang, Jinsong;Liu, Jingzhao
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • In this paper, we develop a nonmonotone spectral memory gradient method for unconstrained optimization, where the spectral stepsize and a class of memory gradient direction are combined efficiently. The global convergence is obtained by using a nonmonotone line search strategy and the numerical tests are also given to show the efficiency of the proposed algorithm.

GLOBAL CONVERGENCE OF A NEW SPECTRAL PRP CONJUGATE GRADIENT METHOD

  • Liu, Jinkui
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1303-1309
    • /
    • 2011
  • Based on the PRP method, a new spectral PRP conjugate gradient method has been proposed to solve general unconstrained optimization problems which produce sufficient descent search direction at every iteration without any line search. Under the Wolfe line search, we prove the global convergence of the new method for general nonconvex functions. The numerical results show that the new method is efficient for the given test problems.

Global Soft Decision Based on Improved Speech Presence Uncertainty Tracking Method Incorporating Spectral Gradient (스펙트럼 변이 기반의 향상된 음성 존재 불확실성 추적 기법을 이용한 Global Soft Decision)

  • Kim, Jong-Woong;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.279-285
    • /
    • 2013
  • In this paper, we propose a novel speech enhancement method to improve the performance of the conventional global soft decision which is based on the spectral gradient method applied to the ratio of a priori speech absence and presence probability value (q). Conventional global soft decision scheme used a fixed value of q in accordance with the hypothesis assumed, but the proposed algorithm is a technique for improving the speech absence probability which is applied adaptively variable value of q according to the speech presence or absence in the previous two frames and the conditions of the spectral gradient value. Experimental results show that the proposed improved global soft decision method based on the spectral gradient method yields better results compared to the conventional global soft decision technique based on the performance criteria of the ITU-T P. 862 PESQ (Perceptual Evaluation of Speech Quality).

Voice Activity Detection Based on Entropy in Noisy Car Environment (차량 잡음 환경에서 엔트로피 기반의 음성 구간 검출)

  • Roh, Yong-Wan;Lee, Kue-Bum;Lee, Woo-Seok;Hong, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • Accurate voice activity detection have a great impact on performance of speech applications including speech recognition, speech coding, and speech communication. In this paper, we propose methods for voice activity detection that can adapt to various car noise situations during driving. Existing voice activity detection used various method such as time energy, frequency energy, zero crossing rate, and spectral entropy that have a weak point of rapid. decline performance in noisy environments. In this paper, the approach is based on existing spectral entropy for VAD that we propose voice activity detection method using MFB(Met-frequency filter banks) spectral entropy, gradient FFT(Fast Fourier Transform) spectral entropy. and gradient MFB spectral entropy. FFT multiplied by Mel-scale is MFB and Mel-scale is non linear scale when human sound perception reflects characteristic of speech. Proposed MFB spectral entropy method clearly improve the ability to discriminate between speech and non-speech for various in noisy car environments that achieves 93.21% accuracy as a result of experiments. Compared to the spectral entropy method, the proposed voice activity detection gives an average improvement in the correct detection rate of more than 3.2%.

  • PDF

Detection of Forged Signatures Using Directional Gradient Spectrum of Image Outline and Weighted Fuzzy Classifier

  • Kim, Chang-Kyu;Han, Soo-Whan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1639-1649
    • /
    • 2004
  • In this paper, a method for detection of forged signatures based on spectral analysis of directional gradient density function and a weighted fuzzy classifier is proposed. The well defined outline of an incoming signature image is extracted in a preprocessing stage which includes noise reduction, automatic thresholding, image restoration and erosion process. The directional gradient density function derived from extracted signature outline is highly related to the overall shape of signature image, and thus its frequency spectrum is used as a feature set. With this spectral feature set, having a property to be invariant in size, shift, and rotation, a weighted fuzzy classifier is evaluated for the verification of freehand and random forgeries. Experiments show that less than 5% averaged error rate can be achieved on a database of 500 signature samples.

  • PDF

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM

  • KIM, DEOKHUN;AHN, HYUNG TAEK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.173-195
    • /
    • 2021
  • A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.

A Multiresolution Wavelet Scattering Analysis of Microstrip Patch antennas (마이크로스트립 패치 안테나의 다중 분해능 웨이블릿 산란해석법)

  • 강병용;주세훈;빈영부;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.640-647
    • /
    • 1998
  • Microstrip patch antennas are analyzed by a multiresolution wavelet method. The spectral Green's dyad of the structure is obtained and its joint spatial-spectral domain representations are presented. Based on the joint spatial-spectral domain representation, we show that the spectral-domain wavelets are useful in the analysis of this problem. We obtain the matrix equations of the integral equations of this Green's dyad by using the method of moment(MoM), and efficiently solve the problem using the spectral domain wavelet transform concepts in conjuction with the conjugate gradient method. The results for a single-layered square patch are compared with those of conventional MoM and CG-FFT.

  • PDF

Research on a Spectral Reconstruction Method with Noise Tolerance

  • Ye, Yunlong;Zhang, Jianqi;Liu, Delian;Yang, Yixin
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.562-575
    • /
    • 2021
  • As a new type of spectrometer, that based on filters with different transmittance features attracts a lot of attention for its advantages such as small-size, low cost, and simple optical structure. It uses post-processing algorithms to achieve target spectrum reconstruction; therefore, the performance of the spectrometer is severely affected by noise. The influence of noise on the spectral reconstruction results is studied in this paper, and suggestions for solving the spectral reconstruction problem under noisy conditions are given. We first list different spectral reconstruction methods, and through simulations demonstrate that these methods show unsatisfactory performance under noisy conditions. Then we propose to apply the gradient projection for sparse reconstruction (GRSR) algorithm to the spectral reconstruction method. Simulation results show that the proposed method can significantly reduce the influence of noise on the spectral reconstruction process. Meanwhile, the accuracy of the spectral reconstruction results is dramatically improved. Therefore, the practicality of the filter-based spectrometer will be enhanced.

NONCONFORMING SPECTRAL ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS

  • Kumar, N. Kishore
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.761-781
    • /
    • 2014
  • An exponentially accurate nonconforming spectral element method for elasticity systems with discontinuities in the coefficients and the flux across the interface is proposed in this paper. The method is least-squares spectral element method. The jump in the flux across the interface is incorporated (in appropriate Sobolev norm) in the functional to be minimized. The interface is resolved exactly using blending elements. The solution is obtained by the preconditioned conjugate gradient method. The numerical solution for different examples with discontinuous coefficients and non-homogeneous jump in the flux across the interface are presented to show the efficiency of the proposed method.

A Study of Spectral Domain Electromagnetic Scattering Analysis Applying Wavelet Transform (웨이블릿을 이용한 파수영역 전자파 산란 해석법 연구)

  • 빈영부;주세훈;이정흠;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.337-344
    • /
    • 2000
  • The wavelet analysis technique is applied in the spectral domain to efficiently represent the multi-scale features of the impedance matrices. In this scheme, the 2-D quadtree decomposition (applying the wavelet transform to only the part of the matrix) method often used in image processing area is applied for a sparse moment matrix. CG(Conjugate-Gradient) method is also applied for saving memory and computation time of wavelet transformed moment matrix. Numerical examples show that for rectangular cylinder case the non-zero elements of the transformed moment matrix grows only as O($N^{1.6}$).

  • PDF