• Title/Summary/Keyword: Spectral Imaging

Search Result 393, Processing Time 0.027 seconds

3-D Surface Profile Measurement Using An Acousto-optic Tunable Filter Based Spectral Phase Shifting Technique

  • Kim, Dae-Suk;Cho, Yong-Jai
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.281-287
    • /
    • 2008
  • An acousto-optic tunable filter based 3-D micro surface profile measurement using an equally spaced 5 spectral phase shifting is described. The 5-bucket spectral phase shifting method is compared with a Fourier-transform method in the spectral domain. It can provide a fast measurement capability while maintaining high accuracy since it needs only 5 pieces of spectrally phase shifted imaging data and a simple calculation in comparison with the Fourier transform method that requires full wavelength scanning data and relatively complicated computation. The 3-D profile data of micro objects can be obtained in a few seconds with an accuracy of ${\sim}10nm$. The 3-D profile method also has an inherent benefit in terms of being speckle-free in measuring diffuse micro objects by employing an incoherent light source. Those simplicity and practical applicability is expected to have diverse applications in 3-D micro profilometry such as semiconductors and micro-biology.

Imaging Evaluation of Peritoneal Metastasis: Current and Promising Techniques

  • Chen Fu;Bangxing Zhang;Tiankang Guo;Junliang Li
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.86-102
    • /
    • 2024
  • Early diagnosis, accurate assessment, and localization of peritoneal metastasis (PM) are essential for the selection of appropriate treatments and surgical guidance. However, available imaging modalities (computed tomography [CT], conventional magnetic resonance imaging [MRI], and 18fluorodeoxyglucose positron emission tomography [PET]/CT) have limitations. The advent of new imaging techniques and novel molecular imaging agents have revealed molecular processes in the tumor microenvironment as an application for the early diagnosis and assessment of PM as well as real-time guided surgical resection, which has changed clinical management. In contrast to clinical imaging, which is purely qualitative and subjective for interpreting macroscopic structures, radiomics and artificial intelligence (AI) capitalize on high-dimensional numerical data from images that may reflect tumor pathophysiology. A predictive model can be used to predict the occurrence, recurrence, and prognosis of PM, thereby avoiding unnecessary exploratory surgeries. This review summarizes the role and status of different imaging techniques, especially new imaging strategies such as spectral photon-counting CT, fibroblast activation protein inhibitor (FAPI) PET/CT, near-infrared fluorescence imaging, and PET/MRI, for early diagnosis, assessment of surgical indications, and recurrence monitoring in patients with PM. The clinical applications, limitations, and solutions for fluorescence imaging, radiomics, and AI are also discussed.

Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications (바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술)

  • Moon Hwan Lee;HeeYeon Park;Kyungsu Lee;Sewoong Kim;Jihun Kim;Jae Youn Hwang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.429-440
    • /
    • 2023
  • This study explores recent research trends and potential applications of ultrasound optical imaging-based multimodal technology. Ultrasound imaging has been widely utilized in medical diagnostics due to its real-time capability and relative safety. However, the drawback of low resolution in ultrasound imaging has prompted active research on multimodal imaging techniques that combine ultrasound with other imaging modalities to enhance diagnostic accuracy. In particular, ultrasound optical imaging-based multimodal technology enables the utilization of each modality's advantages while compensating for their limitations, offering a means to improve the accuracy of the diagnosis. Various forms of multimodal imaging techniques have been proposed, including the fusion of optical coherence tomography, photoacoustic, fluorescence, fluorescence lifetime, and spectral technology with ultrasound. This study investigates recent research trends in ultrasound optical imaging-based multimodal technology, and its potential applications are demonstrated in the biomedical field. The ultrasound optical imaging-based multimodal technology provides insights into the progress of integrating ultrasound and optical technologies, laying the foundation for novel approaches to enhance diagnostic accuracy in the biomedical domain.

A Study of Susceptibility Decomposition in MRI (자기 공명 영상 시스템에서 자화율 분해 영상법에 관한 연구)

  • 노용만;홍인기
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.395-402
    • /
    • 1995
  • The intravoxel spin phases in magnetic resonance imaging (MRI) usually vary due to susceptibility differences of materials to be imaged. The phase variation in the voxel results in a reduction of the signal intensity. This signal intensity reduction is known as the susceptibility effect in MRI and has been studied extensively. In this paper, a new spectral decomposition technique Is proposed and the signal change due to the susceptibility effect can be analyzed. A pulse sequence for the spectral decomposition of the susceptibility was developed and applied to susceptibility imaging of venous blood possessing paramagnetic properties. The computer simulations and their corresponding experimental results obtained using both a phantom and human volunteers are reported. Key words : susceptibility effect in MRI : spectral decomposition of susceptibility effect.

  • PDF

KOMPSAT-2 Geometric Cal/Val Overview and Preliminary Result Analysis (다목적실용위성2호 기하검보정 및 초기결과 분석)

  • Seo, Doo-Chun;Lee, Dong-Han;Song, Jeong-Heon;Park, Su-Young;Lim, Hyo-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.145-148
    • /
    • 2007
  • The Korea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and The main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. KOMPSAT-2 measure the position, velocity and attitude data of satellite using by star sensor, gyro sensor, and GPS sensor. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image, both geometric Cal/Val overview.

  • PDF

PHYSICS REVEALED BY BROAD-RANGE CO LADDERS AND FINE-STRUCTURE LINES IN M83

  • Wu, Ronin
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.147-149
    • /
    • 2017
  • Since the launch of the Herschel Space Observatory, our understanding about the photo-dissociation regions (PDR) has taken a step forward. In the bandwidth of the Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imaging REceiver (SPIRE) on board Herschel, ten CO rotational transitions, including J = 4 - 3 to J = 13 - 12, and three fine structure lines, including [$C{\small{I}}$] 609, [$C{\small{I}}$] 370, and [$N{\small{II}}$] $205{\mu}m$, are covered. I present our findings from the FTS observations at the nuclear region of M83, based on the spatially resolved physical parameters derived from the CO spectral line energy distribution (SLED) map and the comparisons with the dust properties and star-formation tracers. This article discusses (1) the potential of using [$N{\small{II}$] 205 and [$C{\small{I}}$] $370{\mu}m$ as star-formation tracers; (2) the excitation mechanisms of warm CO in the nuclear region of M83.

INITIAL GEOMETRIC ACCURACY OF KOMPSAT-2 HIGH RESOLUTION IMAGE

  • Seo, Doo-Chun;Lim, Hyo-Suk;Shin, Ji-Hyeon;Kim, Moon-Gyu
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.780-783
    • /
    • 2006
  • The KOrea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and the main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image without ground control points and briefly introduces the sensor model of KOMPSAT-2. Also investigated and evaluated the obtained 3-dimensional terrain information using the MSC pass image and scene images acquired from the KOMPSAT-2 satellite.

  • PDF

Microwave Imaging of a Perfectly Conducting Cylinder by Using Modified Newton's Algorithm in the Angular Spectral Domain (각 스펙트럼 영역에서 개선된 Newton 알고리듬을 이용한 완전도체의 역산란 방법)

  • 박선규;박정석;라정웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.34-44
    • /
    • 1994
  • In this paper, an iterative inversion method in angular spectral domain is presented for microwave imaging of a perfectly conducting cylinder. Angular spectra are calculated from measured far-field scattered fields. And then both the propagating modes and the evanescent modes are defined. The center and initial shape of an unknown conductor may be obtained by the characteristics of angular spectra and the total scattering cross section (TSCS). Finally, the orignal shape is reconstructed by the modified Newton algorithm. By using well estimated initial shape the local minima can be avoided, which might appear when the nonlinear equation is solved with Newton algorithm. It is shown to be robust to noise in scattered fields via numerical examples by keeping only the propagating modes and filtering out the evanescent modes.

  • PDF

Optical Coherence Tomography Based on a Continuous-wave Supercontinuum Seeded by Erbium-doped Fiber's Amplified Spontaneous Emission

  • Lee, Ju-Han;Jung, Eun-Joo;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • In this study, the use of a continuous-wave (CW) supercontinuum (SC) seeded by an erbium-doped fiber's amplified spontaneous emission (ASE) for optical-coherence tomography imaging is experimentally demonstrated. It was shown, by taking an in-depth image of a human tooth sample, that due to the smooth, flat spectrum and long-term stability of the proposed CW SC, it can be readily applied to the spectral-domain optical-coherence tomography system. The relative-intensity noise level and spectral bandwidth of the CW SC are also experimentally analyzed as a function of the ASE beam power.

Recent Trends of Hyperspectral Imaging Technology (초분광 이미징 기술동향)

  • Lee, M.S.;Kim, K.S.;Min, G.;Son, D.H.;Kim, J.E.;Kim, S.C.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.86-97
    • /
    • 2019
  • Over the past 30 years, significant developments have been made in hyperspectral imaging (HSI) technologies that can provide end users with rich spectral, spatial, and temporal information. Owing to the advances in miniaturization, cost reduction, real-time processing, and analytical methods, HSI technologies have a wide range of applications from remote-sensing to healthcare, military, and the environment. In this study, we focus on the latest trends of HSI technologies, analytical methods, and their applications. In particular, improved machine learning techniques, such as deep learning, allows the full use of HSI technologies in classification, clustering, and spectral mixture algorithms. Finally, we describe the status of HSI technology development for skin diagnostics.