• Title/Summary/Keyword: Specific conductivity

Search Result 520, Processing Time 0.031 seconds

The Effects of the STS 304 Hollow Cylinder Property Variations on the Non-Steady Heat Conduction (STS 304 중공 원통의 물성치 변화가 비정상 열전도에 미치는 영향)

  • Lee, S.C.;Choi, H.G.;Seo, J.S.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.39-44
    • /
    • 2004
  • The effects of the STS 304 hollow cylinder property variations on the non-steady heat conduction are considered in this paper. In the non steady state, the specific heat and conductivity are depended on the temperature variations, and these properties affect to the governing equation on heat conduction. But the most of numerical analysis on heat conduction is assumed to constant properties which is conductivity and specific heat. Assuming that the properties are reacted sensitively, the numerical results can have the difference of between constant properties with non constant properties. The main parameters are specific heat and conductivity. The temperature distributions of the STS 304 hollow cylinder became in steady state after 4 minutes in case of the constant properties. As the conductivity is varied with temperature, the temperature distributions became in steady state after 15 minutes. Therefore, a numerical analysis of the non steady state heat transfer is so important in case of varying temperature.

  • PDF

Volume Resistivity, Specific Heat and Thermal Conductive Properties of the Semiconductive Shield in Power Cables

  • Lee Kyoung-Yong;Choi Yong-Sung;Park Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.89-96
    • /
    • 2005
  • To improve the mean-life and reliability of power cables, we have investigated the volume resistivity and thermal properties demonstrated by changing the content of carbon black, an additive of the semiconductive shield for underground power transmission. Nine specimens were made of sheet form for measurement. Volume resistivity of the specimens was measured by a volume resistivity meter after 10 minutes in a preheated oven at temperatures of both 25$\pm$1[$^{\circ}C$] and 90$\pm$ 1[$^{\circ}C$]. As well, specific heat (Cp) and thermal conductivity were measured by Nano Flash Diffusivity and DSC (Differential Scanning Calorimetry). The ranges of measurement temperature were from 0[$^{\circ}C$] to 200[$^{\circ}C$], and heating temperature was 4[$^{\circ}C$/min]. From these experimental results, volume resistivity was high according to an increase of the content of carbon black. Specific heat was decreased, while thermal conductivity was increased according to a rise in the content of carbon black. Furthermore, both specific heat and thermal conductivity were increased by heating temperature because the volume of materials was expanded according to a rise in temperature.

Thermo-electrical properties of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Supriya, N.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.25-35
    • /
    • 2017
  • The aim of the work was to investigate the thermo-electrical properties of low cost and rapidly produced randomly oriented carbon/carbon (C/C) composite. The composite body was fabricated by combining the high-pressure hot-pressing (HP) method with the low-pressure impregnation thermosetting carbonization (ITC) method. After the ITC method step selected samples were graphitized at $3000^{\circ}C$. Detailed characterization of the samples' physical properties and thermal properties, including thermal diffusivity, thermal conductivity, specific heat and coefficient of thermal expansion, was carried out. Additionally, direct current (DC) electrical conductivity in both the in-plane and through-plane directions was evaluated. The results indicated that after graphitization the specimens had excellent carbon purity (99.9 %) as compared to that after carbonization (98.1). The results further showed an increasing trend in thermal conductivity with temperature for the carbonized samples and a decreasing trend in thermal conductivity with temperature for graphitized samples. The influence of the thickness of the test specimen on the thermal conductivity was found to be negligible. Further, all of the specimens after graphitization displayed an enormous increase in electrical conductivity (from 190 to 565 and 595 to 1180 S/cm in the through-plane and in-plane directions, respectively).

Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers (밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축)

  • Choi, Jae-Ho;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

Characterization and thermophysical properties of Zr0.8Nd0.2O1.9-MgO composite

  • Nandi, Chiranjit;Kaity, Santu;Jain, Dheeraj;Grover, V.;Prakash, Amrit;Behere, P.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.603-610
    • /
    • 2021
  • The major drawback of zirconia-based materials, in view of their applications as targets for minor actinide transmutation, is their poor thermal conductivity. The addition of MgO, which has high thermal conductivity, to zirconia-based materials is expected to improve their thermal conductivity. On these grounds, the present study aims at phase characterization and thermophysical property evaluation of neodymium-substituted zirconia (Zr0.8Nd0.2O1.9; using Nd2O3 as a surrogate for Am2O3) and its composites with MgO. The composite was prepared by a solid-state reaction of Zr0.8Nd0.2O1.9 (synthesized by gel combustion) and commercial MgO powders at 1773 K. Phase characterization was carried out by X-ray diffraction and the microstructural investigation was performed using a scanning electron microscope equipped with energy dispersive spectroscopy. The linear thermal expansion coefficient of Zr0.8Nd0.2O1.9 increases upon composite formation with MgO, which is attributed to a higher thermal expansivity of MgO. Similarly, specific heat also increases with the addition of MgO to Zr0.8Nd0.2O1.9. Thermal conductivity was calculated from measured thermal diffusivity, temperature-dependent density and specific heat values. Thermal conductivity of Zr0.8Nd0.2O1.9-MgO (50 wt%) composite is more than that of typical UO2 fuel, supporting the potential of Zr0.8Nd0.2O1.9-MgO composites as target materials for minor actinides transmutation.

Effect of Bentonite Type on Thermal Conductivity in a HLW Repository

  • Lee, Gi-Jun;Yoon, Seok;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.331-338
    • /
    • 2021
  • Extensive studies have been conducted on thermal conductivity of bentonite buffer materials, as it affects the safety performance of barriers engineered to contain high-level radioactive waste. Bentonite is composed of several minerals, and studies have shown that the difference in the thermal conductivity of bentonites is due to the variation in their mineral composition. However, the specific reasons contributing to the difference, especially with regard to the thermal conductivity of bentonites with similar mineral composition, have not been elucidated. Therefore, in this study, bentonites with significantly different thermal conductivities, but of similar mineral compositions, are investigated. Most bentonites contain more than 60% of montmorillonite. Therefore, it is believed that the exchangeable cations of montmorillonite could affect the thermal conductivity of bentonites. The effect of bentonite type was comparatively analyzed and was verified through the effective medium model for thermal conductivity. Our results show that Ca-type bentonites have a higher thermal conductivity than Na-type bentonites.

Enhancement of Electrical Conductivity for Ag Grid using Electrical Sintering Method (정전류 전기 소결법을 이용한 Ag 전극 배선의 전도성 향상)

  • Hwang, Jun Y.;Moon, Y.J.;Lee, S.H.;Kang, K.;Kang, H.;Cho, Y.J.;Moon, S.J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Electrical sintering of the front electrode for crystalline silicon solar cells was performed applying a constant DC current to the printed lines. Conducting lines were printed on glass substrate by a drop-on-demand (DOD) inkjet printer and silver nanoparticle ink. Specific resistance and microstructure of sintered silver lines and were measured with varying DC current. To find the relation between temperature increase with changing applied current and specific resistance, temperature elevation was also calculated. Sintering process finished within a few milliseconds. Increasing applied DC current, specific resistance decreased and grain size increased after sintering. Achieved minimum specific resistance is approximately 1.7 times higher than specific resistance of the bulk silver.

  • PDF

Recent Advances in Microstructural Tailoring of Silicon Nitride Ceramics and the Effects on Thermal Conductivity and Fracture Properties

  • Becher Paul F.
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.525-531
    • /
    • 2005
  • Tailoring the microstructure and the composition of silicon nitride ceramics can have profound effects on their properties. Here it is shown that the grain growth behavior, in particular its anisotropy, is a function of the specific additives, which allow one to tune the microstructure from one consisting of more equiaxed grains to one with very elongated grains. Recent studies are discussed that provide an understanding of the atomic level processes by which these additives influence grain shapes. Next the microstructural (and compositional) parameters are discussed that can be used to modify the thermal conductivity, as well as fracture toughness of silicon nitride ceramics. As a result of the open <0001> channels in $\beta-Si_3N_4$, the c-axis conductivity can be exceptionally high. Thus, the formation of elongated c-axis grains, particularly when aligned can result in conductivity values approaching those of AlN ceramics. In addition, the controlled formation of elongated grains can also be used to significantly enhance the fracture toughness. At the same time, both properties are shown to be affected by the composition of the densification additives. Utilizing such understanding, one will be able to tailor the ceramics to achieve the properties desired for specific applications.

Sensitivity Enhancement for Thermophysical Properties Measurements via the Vacuum Operation of Heater-integrated Fluidic Resonators (가열 전극 통합 채널 공진기의 진공 환경 구동에 의한 열물성 측정의 민감도 향상)

  • Juhee Ko;Jungchul Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.39-43
    • /
    • 2023
  • Microscale thermophysical property measurements of liquids have been developed considering the increasing interest in the thermal management of cooling systems and energy storage/transportation systems. To accurately predict the heat transfer performance, information on the thermal conductivity, heat capacity, and density is required. However, a simultaneous analysis of the thermophysical properties of small-volume liquids has rarely been considered. Recently, we proposed a new methodology to simultaneously analyze the aforementioned three intrinsic properties using heater-integrated fluidic resonators (HFRs) in an atmospheric pressure environment comprising a microchannel, resistive heater/thermometer, and mechanical resonator. Typically, the thermal conductivity and volumetric heat capacity are measured based on a temperature response resulting from heating using a resistive thermometer, and the specific heat capacity can be obtained from the volumetric heat capacity by using a resonance densitometer. In this study, we analyze methods to improve the thermophysical property measurement performance using HFRs, focusing on the effect of the ambience around the sensor. The analytical method is validated using a numerical analysis, whose results agree well with preliminary experimental results. In a vacuum environment, the thermal conductivity measurement performance is enhanced, except for the thermal conductivity range of most gases, and the sensitivity of the specific heat capacity measurement is enhanced owing to an increase in the time constant.

A study on thermal conductivities of rocks in Korea (한국의 암석 열전도도에 관한 연구)

  • Park, Jeong-Min;Kim, Hyoung-Chan;Lee, Young-Min;Song, Moo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.449-451
    • /
    • 2007
  • We made 980 thermal conductivity measurements on igneous, metamorphic, sedimentary, and volcanic rock samples from Korea. The average thermal conductivity of igneous, metamorphic, sedimentary, and volcanic rocks are 3.41 W/m-K, 3.98 W/m-K, 4.10 W/m-K, and 3.21 W/m-K, respectively. Thermal conductivity values of a rock type generally have a wide range because thermal conductivity depends on various factors such as dominant mineral phase, micro-structure, anisotoropy and so on. Thermal properties (thermal conductivity, thermal diffusivity and specific heat) are important variables which are used to design a geothermal heat pump(GHP) system. Therefore, our thermal property data can contribute on a efficient design of a GHP system.

  • PDF