DOI QR코드

DOI QR Code

Sensitivity Enhancement for Thermophysical Properties Measurements via the Vacuum Operation of Heater-integrated Fluidic Resonators

가열 전극 통합 채널 공진기의 진공 환경 구동에 의한 열물성 측정의 민감도 향상

  • Juhee Ko (Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology) ;
  • Jungchul Lee (Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology)
  • 고주희 (한국과학기술원 기계공학과) ;
  • 이정철 (한국과학기술원 기계공학과)
  • Received : 2022.10.29
  • Accepted : 2023.01.02
  • Published : 2023.01.31

Abstract

Microscale thermophysical property measurements of liquids have been developed considering the increasing interest in the thermal management of cooling systems and energy storage/transportation systems. To accurately predict the heat transfer performance, information on the thermal conductivity, heat capacity, and density is required. However, a simultaneous analysis of the thermophysical properties of small-volume liquids has rarely been considered. Recently, we proposed a new methodology to simultaneously analyze the aforementioned three intrinsic properties using heater-integrated fluidic resonators (HFRs) in an atmospheric pressure environment comprising a microchannel, resistive heater/thermometer, and mechanical resonator. Typically, the thermal conductivity and volumetric heat capacity are measured based on a temperature response resulting from heating using a resistive thermometer, and the specific heat capacity can be obtained from the volumetric heat capacity by using a resonance densitometer. In this study, we analyze methods to improve the thermophysical property measurement performance using HFRs, focusing on the effect of the ambience around the sensor. The analytical method is validated using a numerical analysis, whose results agree well with preliminary experimental results. In a vacuum environment, the thermal conductivity measurement performance is enhanced, except for the thermal conductivity range of most gases, and the sensitivity of the specific heat capacity measurement is enhanced owing to an increase in the time constant.

Keywords

Acknowledgement

본 연구는 2022년도 과학기술정보통신부의 재원으로 한국연구재단 (NRF-2020R1A2C3004885, 2020R1A4A2002728) 및 산업통상자원부의 재원으로 산업기술평가관리원 (KEIT-00144157)의 지원을 받아 수행되었다.

References

  1. M. Ghanbarpour, E. Bitaraf Haghigi, and R. Khodabandeh, "Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid", Exp. Therm. Fluid. Sci., Vol. 53, pp. 227-235, 2014. https://doi.org/10.1016/j.expthermflusci.2013.12.013
  2. D. Shin and D. Banerjee, "Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications", Int. J. Heat. Mass. Transf., Vol. 84, pp. 898-902, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.100
  3. G. Paul, M. Chopkar, I. Manna, and P. K. Das, "Techniques for measuring the thermal conductivity of nanofluids: A review", Renew. Sustain. Energy Rev., Vol. 14, No. 7, pp. 1913-1924, 2010. https://doi.org/10.1016/j.rser.2010.03.017
  4. S. R. Choi and D. Kim, "Real-time thermal characterization of 12 nl fluid samples in a microchannel", Rev. Sci. Instrum., Vol. 79, No. 6, p. 064901, 2008.
  5. B. K. Park, N. Yi, J. Park, and D. Kim, "Note: Development of a microfabricated sensor to measure thermal conductivity of picoliter scale liquid samples", Rev. Sci. Instrum., Vol. 83, No. 10, p. 106102, 2012.
  6. R. Shrestha, K. M. Lee, W. S. Chang, D. S. Kim, G. H. Rhee, and T. Y. Choi, "Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor", Rev. Sci. Instrum., Vol. 84, No. 3, p. 034901, 2013.
  7. B. Zhao, F. Feng, B. Tian, Z. Yu, and X. Li, "Micro thermal conductivity detector based on SOI substrate with low detection limit", Sens. Actuators B Chem., Vol. 308, p. 127682, 2020.
  8. A. Mahdavifar, M. Navaei, P. J. Hesketh, M. Findlay, J. R. Stetter, and G. W. Hunter, "Transient thermal response of micro-thermal conductivity detector (µTCD) for the identification of gas mixtures: An ultra-fast and low power method", Microsyst. Nanoeng., Vol. 1, No. 1, p. 15025, 2015.
  9. S. Gauthier, A. Giani, and P. Combette, "Gas thermal conductivity measurement using the three-omega method", Sens. Actuators A Phys., Vol. 195, pp. 50-55, 2013. https://doi.org/10.1016/j.sna.2012.12.032
  10. D. G. Cahill, "Thermal conductivity measurement from 30 to 750 K: the 3ω method", Rev. Sci. Instrum., Vol. 61, No. 2, pp. 802-808, 1990. https://doi.org/10.1063/1.1141498
  11. W. Lee, W. Fon, B. W. Axelrod, and M. L. Roukes, "Highsensitivity microfluidic calorimeters for biological and chemical applications", Proc. Natl. Acad. Sci., Vol. 106, No. 36, pp. 15225-15230, 2009. https://doi.org/10.1073/pnas.0901447106
  12. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, "Weighing of biomolecules, single cells and single nanoparticles in fluid", Nature, Vol. 446, No. 7139, pp. 1066-1069, 2007. https://doi.org/10.1038/nature05741
  13. J. Ko, D. Lee, B. J. Lee, S. K. Kauh, and J. Lee, "Micropipette resonator enabling targeted aspiration and mass measurement of single particles and cells", ACS Sens., Vol. 4, No. 12, pp. 3275-3282, 2019. https://doi.org/10.1021/acssensors.9b01843
  14. J. Ko, J. Jeong, S. Son, and J. Lee, "Cellular and biomolecular detection based on suspended microchannel resonators", Biomed. Eng. Lett., Vol. 11, No. 4, pp. 367-382, 2021 https://doi.org/10.1007/s13534-021-00207-7
  15. M. F. Khan, N. Miriyala, J. Lee, M. Hassanpourfard, A. Kumar, and T. Thundat, "Heat capacity measurements of sub-nanoliter volumes of liquids using bimaterial microchannel cantilevers", Appl Phys. Lett., Vol. 108, No. 21, p. 211906, 2016.
  16. M. Yun, I. Lee, S. Jeon, and J. Lee, "Facile phase transition measurements for nanogram level liquid samples using suspended microchannel resonators", IEEE Sens. J., Vol. 14, No. 3, pp. 781-785, 2014. https://doi.org/10.1109/JSEN.2013.2287887
  17. I. Lee, K. Park, and J. Lee, "Precision density and volume contraction measurements of ethanol-water binary mixtures using suspended microchannel resonators", Sens. Actuators A Phys., Vol. 194, pp. 62-66, 2013. https://doi.org/10.1016/j.sna.2013.01.046
  18. J. Ko, F. Khan, Y. Nam, B. J. Lee, and J. Lee, "Nanomechanical sensing using heater-integrated fluidic resonators", Nano Lett., Vol. 22, No. 19, pp. 7768-7775, 2022. https://doi.org/10.1021/acs.nanolett.2c01572
  19. P. Enoksson, G. Stemme, and E. Stemme, "Silicon tube structures for a fluid-density sensor", Sens. Actuators A Phys., Vol. 54, No. 1-3, pp. 558-562, 1996. https://doi.org/10.1016/S0924-4247(97)80014-3
  20. J. Peirs, D. Reynaerts, and H. van Brussel, "Scale effects and thermal considerations for micro-actuators", Proc. 1998 IEEE Int. Conf. Robot.Autom., Vol. 2, pp. 1516-1521, 1988.