DOI QR코드

DOI QR Code

Thermo-electrical properties of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar (Carbon and Ceramics Laboratory (CCL), Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Indian Space Research Organisation) ;
  • Supriya, N. (Analytical and Spectroscopy Division (ASD), Propellants Polymers Chemicals and Materials Entity, Vikram Sarabhai Space Centre, Indian Space Research Organisation)
  • Received : 2016.08.12
  • Accepted : 2017.02.18
  • Published : 2017.04.30

Abstract

The aim of the work was to investigate the thermo-electrical properties of low cost and rapidly produced randomly oriented carbon/carbon (C/C) composite. The composite body was fabricated by combining the high-pressure hot-pressing (HP) method with the low-pressure impregnation thermosetting carbonization (ITC) method. After the ITC method step selected samples were graphitized at $3000^{\circ}C$. Detailed characterization of the samples' physical properties and thermal properties, including thermal diffusivity, thermal conductivity, specific heat and coefficient of thermal expansion, was carried out. Additionally, direct current (DC) electrical conductivity in both the in-plane and through-plane directions was evaluated. The results indicated that after graphitization the specimens had excellent carbon purity (99.9 %) as compared to that after carbonization (98.1). The results further showed an increasing trend in thermal conductivity with temperature for the carbonized samples and a decreasing trend in thermal conductivity with temperature for graphitized samples. The influence of the thickness of the test specimen on the thermal conductivity was found to be negligible. Further, all of the specimens after graphitization displayed an enormous increase in electrical conductivity (from 190 to 565 and 595 to 1180 S/cm in the through-plane and in-plane directions, respectively).

Keywords

References

  1. Xiong X, Huang BY, Li JH, Xu HJ. Friction behaviors of carbon/carbon composites with different pyrolytic carbon textures. Carbon, 44, 463 (2006). https://doi.org/10.1016/j.carbon.2005.08.022.
  2. Fitzer E. The future of carbon-carbon composites. Carbon, 25, 163 (1987). https://doi.org/10.1016/0008-6223(87)90116-3.
  3. Buckley JD. Carbon/carbon: an overview. Ceram Bull, 67, 364 (1998).
  4. Wang Q, Han XH, Sommers A, Park Y, Joen CT, Jacobi A. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks. Int J Refrig, 35, 7, (2012). https://doi.org/10.1016/j.ijrefrig.2011.09.001.
  5. Gandikota V, Jones GF, Fleischer AS. Thermal performance of a carbon fiber composite material heat sink in an FC-72 thermosyphon. Exp Therm Fluid Sci, 34, 554 (2010). https://doi.org/10.1016/j.expthermflusci.2009.11.008.
  6. Raunija TSK, Babu S, Wesley CS. A process of producing carbon/carbon composite. Indian Patent, Application No. 1713/CHE/2012.
  7. Raunija TSK, Babu S. Randomly oriented carbon/carbon composite. AIP Conf Proc, 1538, 168 (2013). https://doi.org/10.1063/1.4810050.
  8. Barabash V, Akiba M, Bonal JP, Federici G, Matera R, Nakamura K, Pacher HD, Rodig M, Vieider G, Wu CH. Carbon fiber composites application in ITER plasma facing components. J Nucl Mater, 258-263, 149 (1998). https://doi.org/10.1016/s0022-3115(98)00267-0.
  9. Antunes RA, de Oliveira MCL, Ett G, Ett V. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: a review of the main challenges to improve electrical performance. J Power Sources, 196, 2945 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.041.
  10. Planes E, Flandin L, Alberola N. Polymer composites bipolar plates for PEMFCs. Energy Procedia, 20, 311 (2012). https://doi.org/10.1016/j.egypro.2012.03.031.
  11. Yuan XZ, Wang H, Zhang J, Wilkinson DP. Bipolar plates for PEM fuel cells: from materials to processing. J New Mater Electrochem Syst, 8, 257 (2005).
  12. Maheshwari PH, Mathur RB, Dhami TL. Fabrication of high strength and a low weight composite bipolar plate for fuel cell applications. J Power Sources, 173, 394 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.049.
  13. Ozturk A, Moore RE. Tensile fatigue behaviour of tightly woven carbon/carbon composites. Composites, 23, 39 (1992). https://doi.org/10.1016/0010-4361(92)90284-2.
  14. Li C, Crosky A. The effect of carbon fabric treatment on delamination of 2D-C/C composites. Compo Sci Technol, 66, 2633 (2006). https://doi.org/10.1016/j.compscitech.2006.03.025.
  15. Lucchesi AJ, Hay JC, White KW. Characterization of wake-zone tractions in an oxidation-inhibited carbon/carbon composite. Compos Sci Technol, 49, 315 (1993). https://doi.org/10.1016/0266-3538(93)90062-l.
  16. Ko TH, Kuo WS, Chang YH. Influence of carbon-fiber felts on the development of carbon-carbon composites. Compos Part A Appl Sci Manuf, 34, 393 (2003). https://doi.org/10.1016/s1359-835x(03)00053-8.
  17. Tzeng SS, Lin WC. Mechanical behavior of two-dimensional carbon/carbon composites with interfacial carbon layers. Carbon, 37, 2011 (1999). https://doi.org/10.1016/s0008-6223(99)00074-3.
  18. Appleyard SP, Rand B. The effect of fibre-matrix interactions on structure and property changes during the fabrication of unidirectional carbon/carbon composites. Carbon, 40, 817 (2002). https://doi.org/10.1016/s0008-6223(01)00204-4.
  19. Rao MV, Mahajan P, Mittal RK. Effect of architecture on mechanical properties of carbon/carbon composites. Compos Struct, 83, 131 (2008). https://doi.org/10.1016/j.compstruct.2007.04.003.
  20. Shin HK, Lee HB, Kim KS. Tribological properties of pitch-based 2-D carbon-carbon composites. Carbon, 39, 959 (2001). https://doi.org/10.1016/s0008-6223(00)00158-5.
  21. Luo R, Huai X, Qu J, Ding H, Xu S. Effect of heat treatment on the tribological behavior of 2D carbon/carbon composites. Carbon, 41, 2693 (2003). https://doi.org/10.1016/s0008-6223(03)00291-4.
  22. Klett JW, Burchell TD, Bailey JL. Method for rapid fabrication of fiber preforms and structural composite materials. US Patent 5,871,838 (1999).
  23. Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S. Thermophysical properties of densified pitch based carbon/carbon materials: I. unidirectional composites. Carbon, 44, 480 (2006). https://doi.org/10.1016/j.carbon.2005.08.012.
  24. Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S. Thermophysical properties of densified pitch based carbon/carbon materials: II. bidirectional composites. Carbon, 44, 488 (2006). https://doi.org/10.1016/j.carbon.2005.08.013.
  25. Park JK, Kang TJ. Thermal and ablative properties of low temperature carbon fiber-phenol formaldehyde resin composites. Carbon, 40, 2125 (2002). https://doi.org/10.1016/s0008-6223(02)00063-5.
  26. Luo R, Liu T, Li J, Zhang H, Chen Z, Tian G. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon, 42, 2887 (2004). https://doi.org/10.1016/j.carbon.2004.06.024.
  27. Raunija TSK, Manwatkar SK, Sharma SC, Verma A. Morphological optimization of process parameters of randomly oriented carbon/carbon composite. Carbon Lett, 15, 25 (2014). https://doi.org/10.5714/cl.2014.15.1.025.
  28. Raunija TSK, Gautam RK, Sharma SC, Verma A. Yield behavior of matrix precursor and interaction with reinforcement in randomly oriented carbon/carbon composite. New Carbon Mater, accepted (2017).
  29. Raunija TSK, Sharma SC. Influence of hot-pressing pressure on the densification of short-carbon-fiber-reinforced, randomly orientedd carbon/carbon composite. Carbon Lett, 16, 25 (2015). https://doi.org/10.5714/cl.2015.16.1.025.
  30. Raunija TSK, Gautam RK, Sharma SC, Verama A. Rapid fabrication of high density C/C composite by coupling of processess. Adv Mater Lett, 8, 136 (2017). https://doi.org/10.5185/amlett.2017.6673.
  31. Raunija TSK. Influence of temperature and time shifts on the densification of randomly oriented carbon/carbon composite. Def Sci J, 65, 411 (2015). https://doi.org/10.14429/dsj.65.8135.
  32. Raunija TSK, Sharma SC, Verama A. Yield enhancement of matrix precursor in short carbon fiber reinforced randomly oriented carbon/carbon composite. Carbon Lett, 19, 57 (2016). https://doi.org/10.5714/cl.2016.19.057.
  33. Raunija TSK, Gautam RK, Bhradwaj VM, Nandikesan N, Shaneeth M, Sharma SC, Verama A. Low cost and rapidly processed randomly oriented carbon/carbon composite bipolar plate for PEM fuel cell. Fuel Cells, 16, 801 (2016). https://doi.org/10.1002/fuce.201600079.
  34. Raunija TSK. A novel macine and method for milling continuous fibers. Indian J Eng and Mater Sci, 22, 541 (2015).
  35. Lee YH, Bulletin of College of Engineering, National Taiwan University. Available from: http://www.eng.ntu.edu.tw/eng/chinese/ bulletin/n89/n89-11.pdf.
  36. Zou L, Huang B, Huang Y, Huang Q, Wang C. An investigation of heterogeneity of the degree of graphitization in carbon-carbon composites. Mater Chem Phys, 82, 654 (2003). https://doi.org/10.1016/s0254-0584(03)00332-8.
  37. Biscoe J, Warren BE. An X-ray study of carbon black. J Appl Phys, 13, 364 (1942). https://doi.org/10.1063/1.1714879.
  38. Savage GM. Carbon-Carbon Composite. London, Chapman and Hall, 323 (1992).
  39. Fitzer E, Manocha LM. Carbon Reinforcements and Carbon/Carbon Composites, Berlin Springer, New York, 97 (1998).
  40. Dekeyrel A, Dourges MA, Weisbecker P, Pailler R, Allemand A, Teneze N, Epherre JF. Characterization of carbon/carbon composites prepared by different processing routes including liquid pitch densification process. Compos Part A Appl Sci Manuf, 49, 81 (2013). https://doi.org/10.1016/j.compositesa.2013.02.010.
  41. Baxter RI, Rawlings RD, Iwashita N, Sawada Y. Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation. Carbon, 38, 441 (2000). https://doi.org/10.1016/s0008-6223(99)00125-6.
  42. Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol, 63, 1637 (2003). https://doi.org/10.1016/S0266-3538(03)00067-8.