• 제목/요약/키워드: Species detection

검색결과 946건 처리시간 0.024초

A Novel Marker for the Species-Specific Detection and Quantitation of Vibrio cholerae by Targeting an Outer Membrane Lipoprotein lolB Gene

  • Cho, Min Seok;Ahn, Tae-Young;Joh, Kiseong;Paik, Soon-Young;Kwon, Oh-Sang;Jheong, Won-Hwa;Joung, Yochan;Park, Dong Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권4호
    • /
    • pp.555-559
    • /
    • 2013
  • Vibrio cholerae O1 and O139 are the major serotypes associated with illness, and some V. cholera non-O1 and non-O139 isolates produce cholera toxin. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the species-specific detection and quantitation of V. cholera using a primer pair based on an outer membrane lipoprotein lolB gene for the amplification of a 195 bp DNA fragment. The qPCR primer set for the accurate diagnosis of V. cholera was developed from publically available genome sequences. This quantitative PCR-based method will potentially simplify and facilitate the diagnosis of this pathogen and guide disease management.

종 특이 primer를 이용한 옥수수 오염 Fusarium verticillioides의 PCR 검출 (Detection of Fusarium verticillioides Contaminated in Corn Using a New Species-specific Primer)

  • 강미란;김지혜;이승호;류재기;이데레사;윤성환
    • 식물병연구
    • /
    • 제17권3호
    • /
    • pp.369-375
    • /
    • 2011
  • Fusarium verticillioides(완전세대: Gibberella moniliformis)는 Gibberellea fujikuroi 종 복합체에 속하는 식물병원균으로서 옥수수의 줄기와 이삭에 썩음병을 일으킬 뿐 아니라 인축에 중독증을 일으키는 fumonisin 곰팡이 독소를 생산한다. 본 연구의 목적은 옥수수에 주로 발생하는 fumonisin 생성가능 G. fujikuori 종 복합체 소속 Fusarium 곰팡이 중 F. verticillioides와 그 외 F. proliferatum, F. fujikuori 등을 서로 구별할 수 있는 종 특이적 PCR primer 조합을 개발하는 것이다. RNA polymerase II beta subunit 유전자(RPB2)의 염기서열로부터 제작된 특이 primer 조합(RVERT1와 RVERT2)은 우리나라 옥수수에서 분리한 잠재적인 fumonisin 생성 G. fujikuori 종 복합체 균주 중 오직 F. verticillioides로부터 208 bp 크기의 단일 DNA 절편을 증폭하였다. 한편 F. verticillioides를 포함한 모든 조사균주는 fumonisin 생합성에 필수적인 FUM1 유전자를 포함하고 있었다. 개발된 특이 primer 조합의 검출한계는 분석 곰팡이 DNA 0.125 pg/${\mu}l$ 수준이었다. 한편, 같은 primer 조합으로 Fusarium spp.에 오염된 옥수수 시료의 게놈 DNA로부터 F. verticillioides 특이 DNA 절편이 증폭되었다. 이와 같은 결과를 종합할 때, 본 연구에서 개발된 primer 조합은 여러 곡물 시료에 오염되어 있는 F. verticillioides 균주의 검출과 종 동정에 유용하게 사용될 것이다.

Development of DNA Microarray for Pathogen Detection

  • Yoo, Seung Min;Keum, Ki Chang;Yoo, So Young;Choi, Jun Yong;Chang, Kyung Hee;Yoo, Nae Choon;Yoo, Won Min;Kim, June Myung;Lee, Duke;Lee, Sang Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권2호
    • /
    • pp.93-99
    • /
    • 2004
  • Pathogens pose a significant threat to humans, animals, and plants. Consequently, a considerable effort has been devoted to developing rapid, convenient, and accurate assays for the detection of these unfavorable organisms. Recently, DNA-microarray based technology is receiving much attention as a powerful tool for pathogen detection. After the target gene is first selected for the unique identification of microorganisms, species-specific probes are designed through bioinformatic analysis of the sequences, which uses the info rmation present in the databases. DNA samples, which were obtained from reference and/or clinical isolates, are properly processed and hybridized with species-specific probes that are immobilized on the surface of the microarray for fluorescent detection. In this study, we review the methods and strategies for the development of DNA microarray for pathogen detection, with the focus on probe design.

만경강 유역에 있어서 간흡충증의 역학적 조사 (Epidemiological Studios of Clonorchis sinensis in Mangyeong Riverside Areas in Korea)

  • 이재구;백병걸이상복고홍범
    • Parasites, Hosts and Diseases
    • /
    • 제21권2호
    • /
    • pp.157-166
    • /
    • 1983
  • In an attempt to clarify the epidemiological feature of C. sinensis in Mangyeong riverside area, the prevalence of clonorchiasis, infestation rate of the cercariae in Parafossarulus manchouricus, and detection rate of the metacercariae in fresh-water fishes were investigated from March 1 to September 30, 1983 at the upper, middle and lower reaches of the river. The results obtained were summarized as follows : 1. Detection rate of C. sinensis egg among inhabitants was 8.2% out of a total of 1,266 personsr, but the differences in detection rates were not statistically significant among upper, middle and lower reaches. According to sect, the detection rates were 10.3% in male and 6.1% in female (p<0.05), but by age groups, increases of the rates were observed as increase in age (p<0.05). 2. Out of a total of 380 fresh-water fishes of 32 different species, 93 fishes (25%) of 12 species were found positive with Clonorchis metacercariae, and there were differences in infection rates of the metacercariae among the fishes in 3 parts of the river; 11% in upper, 35% in middle, and 34% in lower reaches respectively. The metacercarial detection rates from various fishes were 97% in Pseudorasbora larva, Cultriculus eigenmanni (85%) , Gnathepogon strigatus (67%), Microphysogobio yaluensis (50%), Gnathopogon coreanus (47%), Pungtungia hergi (44%), Abbotting riwularis (40%), Moroco oxycephalus (33%), Coreoleuciscus splendidus (32%), Gnathepogon majimap (26%), Rhodeus ocellatus (7%), and Aphyocypris chinensis (3%) respectively. 3. Although very few p. manchouricus were collected at upper reach, 12 snails (0.7%) among a total of 1,713 were found infected with Clonorchis cercariae. Also the cercariae of Echinochasmup iapenicus (7.99%), Lexogenes liberum (0.99%), Cyathocotyle orientalis (0.75%), Esorchis oviformis (0.23%) and Asymphylodora japonica (0.05%) were detected from the snails.

  • PDF

Molecular Detection of Toxoplasma Gondii in Haemaphysalis Ticks in Korea

  • Kim, Ju Yeong;Kwak, You Shine;Lee, In-Yong;Yong, Tai-Soon
    • Parasites, Hosts and Diseases
    • /
    • 제58권3호
    • /
    • pp.327-331
    • /
    • 2020
  • Toxoplasma gondii are intracellular protozoa that can cause neurological disease or death in fetuses and even in immunocompromised human adults. Ticks are recognized as vectors of many microorganisms including viruses, bacteria, and protozoa. Recent studies detected T. gondii in various tick species in many countries. In this study, we performed PCR detection of the T. gondii B1 gene from Haemaphysalis ticks collected from vegetation in 4 localities, Wonju, Gunsan, Miryang, and Yangsan, in Korea. We analyzed DNA from 314 ticks (268 Haemaphysalis longicornis and 46 Haemaphysalis flava) and the B1 gene of T. gondii was detected in 13 of these. The detection of T. gondii in ticks differed significantly by region (P=0.021). T. gondii was detected in the following percentages of collected ticks: 3.7% (7 of 189) in Gunsan, 10% (5 of 50) in Wonju, 16.7% (1 of 6) in Yangsan, and 0% (0 of 69) in Miryang. The detection of T. gondii in ticks was not associated with tick species or development stage. This is the first report of T. gondii detection in ticks in Korea. Our results provide important information necessary to understand toxoplasmosis transmission.

Specific and Sensitive Primers Developed by Comparative Genomics to Detect Bacterial Pathogens in Grains

  • Baek, Kwang Yeol;Lee, Hyun-Hee;Son, Geun Ju;Lee, Pyeong An;Roy, Nazish;Seo, Young-Su;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제34권2호
    • /
    • pp.104-112
    • /
    • 2018
  • Accurate and rapid detection of bacterial plant pathogen is the first step toward disease management and prevention of pathogen spread. Bacterial plant pathogens Clavibacter michiganensis subsp. nebraskensis (Cmn), Pantoea stewartii subsp. stewartii (Pss), and Rathayibacter tritici (Rt) cause Goss's bacterial wilt and blight of maize, Stewart's wilt of maize and spike blight of wheat and barley, respectively. The bacterial diseases are not globally distributed and not present in Korea. This study adopted comparative genomics approach and aimed to develop specific primer pairs to detect these three bacterial pathogens. Genome comparison among target pathogens and their closely related bacterial species generated 15-20 candidate primer pairs per bacterial pathogen. The primer pairs were assessed by a conventional PCR for specificity against 33 species of Clavibacter, Pantoea, Rathayibacter, Pectobacterium, Curtobacterium. The investigation for specificity and sensitivity of the primer pairs allowed final selection of one or two primer pairs per bacterial pathogens. In our assay condition, a detection limit of Pss and Cmn was $2pg/{\mu}l$ of genomic DNA per PCR reaction, while the detection limit for Rt primers was higher. The selected primers could also detect bacterial cells up to $8.8{\times}10^3cfu$ to $7.84{\times}10^4cfu$ per gram of grain seeds artificially infected with corresponding bacterial pathogens. The primer pairs and PCR assay developed in this study provide an accurate and rapid detection method for three bacterial pathogens of grains, which can be used to investigate bacteria contamination in grain seeds and to ultimately prevent pathogen dissemination over countries.

Immunochromatographic Strip Assay for Detection of Cronobacter sakazakii in Pure Culture

  • Song, Xinjie;Shukla, Shruti;Lee, Gibaek;Kim, Myunghee
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1855-1862
    • /
    • 2016
  • Cronobacter sakazakii (C. sakazakii) is a foodborne pathogen, posing a high risk of disease to infants and immunocompromised individuals. In order to develop a quick, easy, and sensitive assay for detecting C. sakazakii, a rabbit anti-C. sakazakii immunoglobulin G (IgG) was developed using sonicated cell protein from C. sakazakii. The developed anti-C. sakazakii (IgG) was of good quality and purity, as well as species-specific. The developed rabbit anti-C. sakazakii IgG was attached to the surface of a sulforhodamine B-encapsulated liposome to form an immunoliposome. A test strip was then prepared by coating goat anti-rabbit IgG onto the control line and rabbit anti-C. sakazakii IgG onto the test line, respectively, of a plastic-backed nitrocellulose membrane. A purple color signal both on the test line and the control line indicated the presence of C. sakazakii in the sample, whereas purple color only on the control line indicated the absence of C. sakazakii in the sample. This immunochromatographic strip assay could produce results in 15 min with a limit of detection of $10^7CFU/ml$ in C. sakazakii culture. The immunochromatographic strip assay also showed very good specificity without cross-reactivity with other tested Cronobacter species. Based on these results, the developed immunochromatographic strip assay is efficient for the detection of C. sakazakii and has high potential for on-site detection.

The detection of Toxoplasma gondii ME49 infections in BALB/c mice using various techniques

  • Hae-Ji Kang;Jie Mao;Min-Ju Kim;Keon-Woong Yoon;Gi-Deok Eom;Ki-Back Chu;Eun-Kyung Moon;Fu-Shi Quan
    • Parasites, Hosts and Diseases
    • /
    • 제61권4호
    • /
    • pp.418-427
    • /
    • 2023
  • Toxoplasma gondii infections are primarily diagnosed by serological assays, whereas molecular and fluorescence-based techniques are garnering attention for their high sensitivity in detecting these infections. Nevertheless, each detection method has its limitations. The toxoplasmosis detection capabilities of most of the currently available methods have not been evaluated under identical experimental conditions. This study aimed to assess the diagnostic potential of enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and immunofluorescence (IF) in BALB/c mice experimentally infected with various doses of T. gondii ME49. The detection of toxoplasmosis from sera and brain tissues was markedly enhanced in mice subjected to high infection doses (200 and 300 cysts) compared to those subjected to lower doses (10 and 50 cysts) for all the detection methods. Additionally, increased B1 gene expression levels and cyst sizes were observed in the brain tissues of the mice. Importantly, IHC, IF, and ELISA, but not RT-PCR, successfully detected T. gondii infections at the lowest infection dose (10 cysts) in the brain. These findings may prove beneficial while designing experimental methodologies for detecting T. gondii infections in mice.