DOI QR코드

DOI QR Code

Immunochromatographic Strip Assay for Detection of Cronobacter sakazakii in Pure Culture

  • Song, Xinjie (Department of Food Science and Technology, Yeungnam University) ;
  • Shukla, Shruti (Department of Food Science and Technology, Yeungnam University) ;
  • Lee, Gibaek (Department of Food Science and Technology, Yeungnam University) ;
  • Kim, Myunghee (Department of Food Science and Technology, Yeungnam University)
  • Received : 2016.06.03
  • Accepted : 2016.07.26
  • Published : 2016.11.28

Abstract

Cronobacter sakazakii (C. sakazakii) is a foodborne pathogen, posing a high risk of disease to infants and immunocompromised individuals. In order to develop a quick, easy, and sensitive assay for detecting C. sakazakii, a rabbit anti-C. sakazakii immunoglobulin G (IgG) was developed using sonicated cell protein from C. sakazakii. The developed anti-C. sakazakii (IgG) was of good quality and purity, as well as species-specific. The developed rabbit anti-C. sakazakii IgG was attached to the surface of a sulforhodamine B-encapsulated liposome to form an immunoliposome. A test strip was then prepared by coating goat anti-rabbit IgG onto the control line and rabbit anti-C. sakazakii IgG onto the test line, respectively, of a plastic-backed nitrocellulose membrane. A purple color signal both on the test line and the control line indicated the presence of C. sakazakii in the sample, whereas purple color only on the control line indicated the absence of C. sakazakii in the sample. This immunochromatographic strip assay could produce results in 15 min with a limit of detection of $10^7CFU/ml$ in C. sakazakii culture. The immunochromatographic strip assay also showed very good specificity without cross-reactivity with other tested Cronobacter species. Based on these results, the developed immunochromatographic strip assay is efficient for the detection of C. sakazakii and has high potential for on-site detection.

Keywords

References

  1. Beuchat LR, Kim H, Gurtler JB, Lin LC, Ryu JH, Richards GM. 2009. Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. Int. J. Food Microbiol. 136: 204-213. https://doi.org/10.1016/j.ijfoodmicro.2009.02.029
  2. Blazkova M, Javurkova B, Fukal L, Rauch P. 2011. Immunochromatographic strip test for detection of genus Cronobacter. Biosens. Bioelectron. 26: 2828-2834. https://doi.org/10.1016/j.bios.2010.10.001
  3. Bochot A, Fattal E. 2012. Liposomes for intravitreal drug delivery: a state of the art. J. Control. Release 161: 628-634. https://doi.org/10.1016/j.jconrel.2012.01.019
  4. Bowen AB, Braden CR. 2006. Invasive Enterobacter sakazakii disease in infants. Emerg. Infect. Dis. 12: 1185-1189. https://doi.org/10.3201/eid1208.051509
  5. Chap J, Jackson P, Siqueira R, Gaspar N, Quintas C, Park J, et al. 2009. International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. Int. J. Food Microbiol. 136: 185-188. https://doi.org/10.1016/j.ijfoodmicro.2009.08.005
  6. Chen F, Ming X, Chen X, Gan M, Wang B. 2014. Immunochromatographic strip for rapid detection of Cronobacter in powdered infant formula in combination with silica-coated magnetic nanoparticles separation and 16S rRNA probe. Biosens. Bioelectron. 61: 306-313. https://doi.org/10.1016/j.bios.2014.05.033
  7. DeCory TR, Durst RA, Zimmerman SJ, Garringer LA, Paluca C, Decory HK, et al. 2005. Development of an immunomagnetic bead immunoliposome fluorescence assay for rapid detection of Escherichia coli O157:H7 in aqueous samples and comparison of the assay with a standard microbiological method. Appl. Environ. Microbiol. 71: 1856-1864. https://doi.org/10.1128/AEM.71.4.1856-1864.2005
  8. Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO). 2006. Enterobacter sakazakii and Salmonella in powdered infant formula: meeting report. World Health Organization, Genenva.
  9. Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO). 2007. Guidelines: safe preparation, storage and handling of powdered infant formula. World Health Organization, Genenva.
  10. Gallova J, Uhrikova D, Islamov A, Kuklin A. 2004. Effect of cholesterol on the bilayer thickness in unilamellar extruded DLPC and DOPC liposome: SANS contrast variation study. Gen. Physiol. Biophys. 13: 113-128.
  11. Gomez-Hens A, Fernadez-Romero JMF. 2005. The role of liposomes in analytical processes. Trends Anal. Chem. 24: 9-19. https://doi.org/10.1016/j.trac.2004.07.017
  12. Ho JA, Zeng SC, Tseng WH, Lin YJ, Chen CH. 2008. Liposome-based immunostrip for the rapid detection of Salmonella. Anal. Bioanal. Chem. 391: 479-485. https://doi.org/10.1007/s00216-008-1875-5
  13. Holy O, Forsythe S. 2014. Cronobacter spp. as emerging causes of healthcare-associated infection. J. Hosp. Infect. 86: 169-177. https://doi.org/10.1016/j.jhin.2013.09.011
  14. Iversen C, Forsythe S. 2003. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci. Technol. 14: 443-454. https://doi.org/10.1016/S0924-2244(03)00155-9
  15. Iversen C, Forsythe S. 2004. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant milk and related products. Food Microbiol. 21: 771-777. https://doi.org/10.1016/j.fm.2004.01.009
  16. Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, et al. 2007. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov., Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies. BMC Evol. Biol. 7: 64. https://doi.org/10.1186/1471-2148-7-64
  17. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, et al. 2008. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov. comb. nov., C. malonaticus sp. nov., C. turicensis sp. nov., C. muytjensii sp. nov., C. dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, C. dublinensis sp. nov. subsp. dublinensis subsp. nov., C. dublinensis sp. nov. subsp. lausannensis subsp. nov., and C. dublinensis sp. nov. subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 58: 1442-1447. https://doi.org/10.1099/ijs.0.65577-0
  18. Jackson EE, Sonbol H, Masood N, Forsythe SJ. 2014. Reevaluation of a suspected Cronobacter sakazakii outbreak in Mexico. Food Microbiol. 44: 226-235. https://doi.org/10.1016/j.fm.2014.06.013
  19. Jesorka A, Orwar O. 2008. Liposomes: technologies and analytical applications. Annu. Rev. Anal. Chem. 1: 801-832. https://doi.org/10.1146/annurev.anchem.1.031207.112747
  20. Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe S. 2012. Cronobacter condimenti sp. nov., isolated from spiced meat and Cronobacter universalis sp. nov., a novel species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water, and food ingredients. Int. J. Syst. Evol. Microbiol. 62: 1277-1283. https://doi.org/10.1099/ijs.0.032292-0
  21. Jung MK, Park JH. 2006. Prevalence and thermal stability of Enterobacter sakazakii from unprocessed ready-to-eat agricultural products and powdered infant formulas. Food Sci. Biotechnol. 15: 152-157.
  22. Kim H, Beauchat LR. 2005. Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. J. Food Protect. 68: 2541-2552. https://doi.org/10.4315/0362-028X-68.12.2541
  23. Lee YD, Park JH, Chang H. 2012. Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control 24: 225-230. https://doi.org/10.1016/j.foodcont.2011.09.023
  24. Shukla S, Bang J, Heu S, Kim M. 2012. Development of immunoliposome-based assay for the detection of Salmonella Typhimurium. Eur. Food Res. Technol. 234: 53-59. https://doi.org/10.1007/s00217-011-1606-6
  25. Shukla S, Lee G, Song X, Park S, Kim M. 2016. Immunoliposome-based immunomagnetic concentration and separation assay for rapid detection of Cronobacter sakazakii. Biosens. Bioelectron. 77: 986-994. https://doi.org/10.1016/j.bios.2015.10.077
  26. Shukla S, Lee H, Kim M. 2011. Development of a liposomebased immunochromatographic strip assay for the detection of Salmonella. Anal. Bioanal. Chem. 401: 2581-2590. https://doi.org/10.1007/s00216-011-5327-2
  27. Shukla S, Leem H, Lee J, Kim M. 2014. Immunochromatographic strip assay for the rapid and sensitive detection of Salmonella Typhimurium in artificially contaminated tomato samples. Can. J. Microbiol. 60: 399-406. https://doi.org/10.1139/cjm-2014-0223
  28. Song C, Li J, Liu J, Liu Q. 2016. Simple sensitive rapid detection of Escherichia coli O157:H7 in food sample by label-free immunofluorescence strip sensor. Talanta 156-157: 42-47. https://doi.org/10.1016/j.talanta.2016.04.054
  29. Song X, Shukla S, Oh S, Kim Y, Kim M. 2015. Development of fluorescence-based liposome immunoassay for detection of Cronobacter muytjensii in pure culture. Curr. Microbiol. 70: 246-252. https://doi.org/10.1007/s00284-014-0708-3
  30. Stephan R, Grim CJ, Goponath GR, Mammel MK, Sathyamorrthy V, Trach LH, et al. 2014. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 64: 3402-3410. https://doi.org/10.1099/ijs.0.059832-0
  31. Sun Y, Wang M, Liu H, Wang J, He X, Zeng J, et al. 2011. Development of an O-antigen serotyping scheme for Cronobacter sakazakii. Appl. Environ. Microbiol. 77: 2209-2014. https://doi.org/10.1128/AEM.02229-10
  32. Torchilin VP. 2005. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4: 145-160. https://doi.org/10.1038/nrd1632
  33. US Food and Drug Administration. 2002. US Food and Drug Administration website. http://www.fda.gov/Food/ ScienceResearch/LaboratoryMethods/ucm114665.htm.
  34. van Acker J, de Smet F, Muyldermans G, Bougatef A, Naessens A, Lauwers S. 2001. Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J. Clin. Microbiol. 39: 293-297. https://doi.org/10.1128/JCM.39.1.293-297.2001
  35. Wang X, Zhu CQ, Xu XL, Zhou GH. 2012. Real-time PCR with internal amplification control for the detection of Cronobacter spp. (Enterobacter sakazakii) in food samples. Food Control 25: 144-149. https://doi.org/10.1016/j.foodcont.2011.10.037
  36. World Health Organization. 2004. Enterobacter sakazakii and other microorganisms in powdered infant formula: meeting report. World Health Organization, Geneva.
  37. World Health Organization. 2007. Enterobacter sakazakii and Salmonella in powdered infant formula. World Health Organization, Geneva.
  38. Xu X, Li C, Wu Q, Zhang J, Huang J, Yang G. 2015. Prevalence, molecular characterization, and antibiotic susceptibility of Cronobacter spp. in Chinese ready-to-eat foods. Int. J. Food Microbiol. 204: 17-23. https://doi.org/10.1016/j.ijfoodmicro.2015.03.003
  39. Zhao Y, Yao Y, Xiao M, Lee CC, Zhang L, Zhang KX, et al. 2013. Rapid detection of Cronobacter sakazakii in dairy food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control 34: 436-443. https://doi.org/10.1016/j.foodcont.2013.05.004
  40. Zhu S, Schnell S, Matthias F. 2012. Rapid detection of Cronobacter spp. with a method combining impedance technology and rRNA based lateral flow assay. Int. J. Food Microbiol. 159: 54-58. https://doi.org/10.1016/j.ijfoodmicro.2012.07.017
  41. Zimmermann J, Schmidt H, Loessener MJ, Weiss A. 2014. Development of a rapid detection system for opportunistic pathogenic Cronobacter spp. in powdered milk products. Food Microbiol. 42: 19-25. https://doi.org/10.1016/j.fm.2014.02.010

Cited by

  1. Multiplexed Lateral Flow Test for Detection and Differentiation of Cronobacter sakazakii Serotypes O1 and O2 vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01826
  2. Current Demands for Food-Approved Liposome Nanoparticles in Food and Safety Sector vol.8, pp.None, 2016, https://doi.org/10.3389/fmicb.2017.02398
  3. A Novel Surface-Exposed Polypeptide Is Successfully Employed as a Target for Developing a Prototype One-Step Immunochromatographic Strip for Specific and Sensitive Direct Detection of Staphylococcus vol.10, pp.11, 2016, https://doi.org/10.3390/biom10111580
  4. Specific detection of Cronobacter sakazakii in powdered infant formula using ssDNA aptamer vol.146, pp.11, 2021, https://doi.org/10.1039/d1an00118c