Browse > Article
http://dx.doi.org/10.4014/jmb.1606.06004

Immunochromatographic Strip Assay for Detection of Cronobacter sakazakii in Pure Culture  

Song, Xinjie (Department of Food Science and Technology, Yeungnam University)
Shukla, Shruti (Department of Food Science and Technology, Yeungnam University)
Lee, Gibaek (Department of Food Science and Technology, Yeungnam University)
Kim, Myunghee (Department of Food Science and Technology, Yeungnam University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.11, 2016 , pp. 1855-1862 More about this Journal
Abstract
Cronobacter sakazakii (C. sakazakii) is a foodborne pathogen, posing a high risk of disease to infants and immunocompromised individuals. In order to develop a quick, easy, and sensitive assay for detecting C. sakazakii, a rabbit anti-C. sakazakii immunoglobulin G (IgG) was developed using sonicated cell protein from C. sakazakii. The developed anti-C. sakazakii (IgG) was of good quality and purity, as well as species-specific. The developed rabbit anti-C. sakazakii IgG was attached to the surface of a sulforhodamine B-encapsulated liposome to form an immunoliposome. A test strip was then prepared by coating goat anti-rabbit IgG onto the control line and rabbit anti-C. sakazakii IgG onto the test line, respectively, of a plastic-backed nitrocellulose membrane. A purple color signal both on the test line and the control line indicated the presence of C. sakazakii in the sample, whereas purple color only on the control line indicated the absence of C. sakazakii in the sample. This immunochromatographic strip assay could produce results in 15 min with a limit of detection of $10^7CFU/ml$ in C. sakazakii culture. The immunochromatographic strip assay also showed very good specificity without cross-reactivity with other tested Cronobacter species. Based on these results, the developed immunochromatographic strip assay is efficient for the detection of C. sakazakii and has high potential for on-site detection.
Keywords
Antibody; Cronobacter sakazakii; immunochromatographic strip assay; liposome; rapid detection;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Beuchat LR, Kim H, Gurtler JB, Lin LC, Ryu JH, Richards GM. 2009. Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. Int. J. Food Microbiol. 136: 204-213.   DOI
2 Blazkova M, Javurkova B, Fukal L, Rauch P. 2011. Immunochromatographic strip test for detection of genus Cronobacter. Biosens. Bioelectron. 26: 2828-2834.   DOI
3 Bochot A, Fattal E. 2012. Liposomes for intravitreal drug delivery: a state of the art. J. Control. Release 161: 628-634.   DOI
4 Bowen AB, Braden CR. 2006. Invasive Enterobacter sakazakii disease in infants. Emerg. Infect. Dis. 12: 1185-1189.   DOI
5 US Food and Drug Administration. 2002. US Food and Drug Administration website. http://www.fda.gov/Food/ ScienceResearch/LaboratoryMethods/ucm114665.htm.
6 van Acker J, de Smet F, Muyldermans G, Bougatef A, Naessens A, Lauwers S. 2001. Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J. Clin. Microbiol. 39: 293-297.   DOI
7 Wang X, Zhu CQ, Xu XL, Zhou GH. 2012. Real-time PCR with internal amplification control for the detection of Cronobacter spp. (Enterobacter sakazakii) in food samples. Food Control 25: 144-149.   DOI
8 World Health Organization. 2004. Enterobacter sakazakii and other microorganisms in powdered infant formula: meeting report. World Health Organization, Geneva.
9 Chen F, Ming X, Chen X, Gan M, Wang B. 2014. Immunochromatographic strip for rapid detection of Cronobacter in powdered infant formula in combination with silica-coated magnetic nanoparticles separation and 16S rRNA probe. Biosens. Bioelectron. 61: 306-313.   DOI
10 Chap J, Jackson P, Siqueira R, Gaspar N, Quintas C, Park J, et al. 2009. International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. Int. J. Food Microbiol. 136: 185-188.   DOI
11 DeCory TR, Durst RA, Zimmerman SJ, Garringer LA, Paluca C, Decory HK, et al. 2005. Development of an immunomagnetic bead immunoliposome fluorescence assay for rapid detection of Escherichia coli O157:H7 in aqueous samples and comparison of the assay with a standard microbiological method. Appl. Environ. Microbiol. 71: 1856-1864.   DOI
12 Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO). 2006. Enterobacter sakazakii and Salmonella in powdered infant formula: meeting report. World Health Organization, Genenva.
13 Zhu S, Schnell S, Matthias F. 2012. Rapid detection of Cronobacter spp. with a method combining impedance technology and rRNA based lateral flow assay. Int. J. Food Microbiol. 159: 54-58.   DOI
14 World Health Organization. 2007. Enterobacter sakazakii and Salmonella in powdered infant formula. World Health Organization, Geneva.
15 Xu X, Li C, Wu Q, Zhang J, Huang J, Yang G. 2015. Prevalence, molecular characterization, and antibiotic susceptibility of Cronobacter spp. in Chinese ready-to-eat foods. Int. J. Food Microbiol. 204: 17-23.   DOI
16 Zhao Y, Yao Y, Xiao M, Lee CC, Zhang L, Zhang KX, et al. 2013. Rapid detection of Cronobacter sakazakii in dairy food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control 34: 436-443.   DOI
17 Torchilin VP. 2005. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4: 145-160.   DOI
18 Ho JA, Zeng SC, Tseng WH, Lin YJ, Chen CH. 2008. Liposome-based immunostrip for the rapid detection of Salmonella. Anal. Bioanal. Chem. 391: 479-485.   DOI
19 Gallova J, Uhrikova D, Islamov A, Kuklin A. 2004. Effect of cholesterol on the bilayer thickness in unilamellar extruded DLPC and DOPC liposome: SANS contrast variation study. Gen. Physiol. Biophys. 13: 113-128.
20 Gomez-Hens A, Fernadez-Romero JMF. 2005. The role of liposomes in analytical processes. Trends Anal. Chem. 24: 9-19.   DOI
21 Holy O, Forsythe S. 2014. Cronobacter spp. as emerging causes of healthcare-associated infection. J. Hosp. Infect. 86: 169-177.   DOI
22 Jesorka A, Orwar O. 2008. Liposomes: technologies and analytical applications. Annu. Rev. Anal. Chem. 1: 801-832.   DOI
23 Zimmermann J, Schmidt H, Loessener MJ, Weiss A. 2014. Development of a rapid detection system for opportunistic pathogenic Cronobacter spp. in powdered milk products. Food Microbiol. 42: 19-25.   DOI
24 Iversen C, Forsythe S. 2003. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci. Technol. 14: 443-454.   DOI
25 Iversen C, Forsythe S. 2004. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant milk and related products. Food Microbiol. 21: 771-777.   DOI
26 Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, et al. 2007. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov., Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies. BMC Evol. Biol. 7: 64.   DOI
27 Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO). 2007. Guidelines: safe preparation, storage and handling of powdered infant formula. World Health Organization, Genenva.
28 Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, et al. 2008. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov. comb. nov., C. malonaticus sp. nov., C. turicensis sp. nov., C. muytjensii sp. nov., C. dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, C. dublinensis sp. nov. subsp. dublinensis subsp. nov., C. dublinensis sp. nov. subsp. lausannensis subsp. nov., and C. dublinensis sp. nov. subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 58: 1442-1447.   DOI
29 Jackson EE, Sonbol H, Masood N, Forsythe SJ. 2014. Reevaluation of a suspected Cronobacter sakazakii outbreak in Mexico. Food Microbiol. 44: 226-235.   DOI
30 Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe S. 2012. Cronobacter condimenti sp. nov., isolated from spiced meat and Cronobacter universalis sp. nov., a novel species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water, and food ingredients. Int. J. Syst. Evol. Microbiol. 62: 1277-1283.   DOI
31 Jung MK, Park JH. 2006. Prevalence and thermal stability of Enterobacter sakazakii from unprocessed ready-to-eat agricultural products and powdered infant formulas. Food Sci. Biotechnol. 15: 152-157.
32 Kim H, Beauchat LR. 2005. Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. J. Food Protect. 68: 2541-2552.   DOI
33 Lee YD, Park JH, Chang H. 2012. Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control 24: 225-230.   DOI
34 Shukla S, Leem H, Lee J, Kim M. 2014. Immunochromatographic strip assay for the rapid and sensitive detection of Salmonella Typhimurium in artificially contaminated tomato samples. Can. J. Microbiol. 60: 399-406.   DOI
35 Shukla S, Bang J, Heu S, Kim M. 2012. Development of immunoliposome-based assay for the detection of Salmonella Typhimurium. Eur. Food Res. Technol. 234: 53-59.   DOI
36 Shukla S, Lee G, Song X, Park S, Kim M. 2016. Immunoliposome-based immunomagnetic concentration and separation assay for rapid detection of Cronobacter sakazakii. Biosens. Bioelectron. 77: 986-994.   DOI
37 Shukla S, Lee H, Kim M. 2011. Development of a liposomebased immunochromatographic strip assay for the detection of Salmonella. Anal. Bioanal. Chem. 401: 2581-2590.   DOI
38 Song C, Li J, Liu J, Liu Q. 2016. Simple sensitive rapid detection of Escherichia coli O157:H7 in food sample by label-free immunofluorescence strip sensor. Talanta 156-157: 42-47.   DOI
39 Song X, Shukla S, Oh S, Kim Y, Kim M. 2015. Development of fluorescence-based liposome immunoassay for detection of Cronobacter muytjensii in pure culture. Curr. Microbiol. 70: 246-252.   DOI
40 Stephan R, Grim CJ, Goponath GR, Mammel MK, Sathyamorrthy V, Trach LH, et al. 2014. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 64: 3402-3410.   DOI
41 Sun Y, Wang M, Liu H, Wang J, He X, Zeng J, et al. 2011. Development of an O-antigen serotyping scheme for Cronobacter sakazakii. Appl. Environ. Microbiol. 77: 2209-2014.   DOI