• Title/Summary/Keyword: Spatiotemporal

Search Result 613, Processing Time 0.037 seconds

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.

Representation of Event-Based Ontology Models: A Comparative Study

  • Ali, Ashour;Noah, Shahrul Azman Mohd;Zakaria, Lailatul Qadri
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.147-156
    • /
    • 2022
  • Ontologies are knowledge containers in which information about a specified domain can be shared and reused. An event happens within a specific time and place and in which some actors engage and show specific action features. The fact is that several ontology models are based on events called Event-Based Models, where the event is an individual entity or concept connected with other entities to describe the underlying ontology because the event can be composed of spatiotemporal extents. However, current event-based ontologies are inadequate to bridge the gap between spatiotemporal extents and participants to describe a specific domain event. This paper reviews, describes and compares the existing event-based ontologies. The paper compares various ways of representing the events and how they have been modelled, constructed, and integrated with the ontologies. The primary criterion for comparison is based on the events' ability to represent spatial and temporal extent and the participants in the event.

Spatiotemporal evolution and influencing factors of ecosystem service value in the Sanjiangyuan nature reserve nature reserve

  • Liu, Hao;Shu, Chang;Sun, Lihui
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.319-336
    • /
    • 2022
  • Evaluating the temporal and spatial changes in the ecosystem service value (ESV) of the Sanjiangyuan Nature Reserve is important for understanding the impact of human activities on natural ecosystem and guiding ecosystem restoration and environmental pollution control. In this study, remotely sensed land-cover data and the equivalent factor method were used to analyze the spatiotemporal evolution characteristics of the ESV in Sanjiangyuan Nature Reserve from 1992 to 2015, and regression analysis was employed to determine the factors driving changes in the ESV. The results show that grassland was the main type of ecosystem in the study area, and the transformation of grassland into bare areas was the primary change in land cover. Additionally, the ESV in the study area first decreased and then increased, with an annual growth rate of 0.69%. The ESV mainly increased in the north of the Yellow River's source area, and mainly decreased in the northwest of the Yangtze River's source area. Finally, the gross output value of agriculture, urbanization rate and proportion of secondary industry were found to be the main factors driving the ESV in the study area.

Evaluation performance of machine learning in merging multiple satellite-based precipitation with gauge observation data

  • Nhuyen, Giang V.;Le, Xuan-hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.143-143
    • /
    • 2022
  • Precipitation plays an essential role in water resources management and disaster prevention. Therefore, the understanding related to spatiotemporal characteristics of rainfall is necessary. Nowadays, highly accurate precipitation is mainly obtained from gauge observation systems. However, the density of gauge stations is a sparse and uneven distribution in mountainous areas. With the proliferation of technology, satellite-based precipitation sources are becoming increasingly common and can provide rainfall information in regions with complex topography. Nevertheless, satellite-based data is that it still remains uncertain. To overcome the above limitation, this study aims to take the strengthens of machine learning to generate a new reanalysis of precipitation data by fusion of multiple satellite precipitation products (SPPs) with gauge observation data. Several machine learning algorithms (i.e., Random Forest, Support Vector Regression, and Artificial Neural Network) have been adopted. To investigate the robustness of the new reanalysis product, observed data were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the machine learning model showed higher accuracy than original satellite rainfall products, and its spatiotemporal variability was better reflected than others. Thus, reanalysis of satellite precipitation product based on machine learning can be useful source input data for hydrological simulations in ungauged river basins.

  • PDF

Land Cover Classifier Using Coordinate Hash Encoder (좌표 해시 인코더를 활용한 토지피복 분류 모델)

  • Yongsun Yoon;Dongjae Kwon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1771-1777
    • /
    • 2023
  • With the advancements of deep learning, many semantic segmentation-based methods for land cover classification have been proposed. However, existing deep learning-based models only use image information and cannot guarantee spatiotemporal consistency. In this study, we propose a land cover classification model using geographical coordinates. First, the coordinate features are extracted through the Coordinate Hash Encoder, which is an extension of the Multi-resolution Hash Encoder, an implicit neural representation technique, to the longitude-latitude coordinate system. Next, we propose an architecture that combines the extracted coordinate features with different levels of U-net decoder. Experimental results show that the proposed method improves the mean intersection over union by about 32% and improves the spatiotemporal consistency.

A Study on the Spatiotemporal Interpretation of Derek Jarman's Garden (데릭 저먼의 정원에 대한 시공간적(時空間的) 해석)

  • Yun, Jiayan;Zoh, Kyungjin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.66-79
    • /
    • 2016
  • This study looks at spatiotemporal theories regarding the pluralism of time inherent in garden space, and attempts to establish spatiotemporal theories suitable for garden spaces. Based on the established theories, this study analyzes the intimacy of garden spaces by focusing on the objective and subjective time of garden spaces in Derek Jarman's garden through a literature review. The sense of time inherent to a garden space was divided into objective and subjective time. The former refers to ecological time that is quantified and has durability, while the latter indicates time that changes according to the consciousness of the human subject. It also includes time that is emotionalized by the sense of the human subject. This study first interpreted Jarman's garden space from the perspective of objective time. The garden transforms itself into a sensitive space according to Jarman's personal emotions in the current space within objective time, showing the multilayered attributes of space. Therefore, a garden space that exists in objective time is ultimately not objective, and is transformed according to the active reception of the human subject. Next, this study examined Jarman's garden space from the perspective of subjective time. The garden space lost in Jarman's memories and the one in his future illusion turn into a space that connotes abundant meaning according to Jarman's imagination or perception. Therefore, in subjective time, garden space is transformed according to Jarman's consciousness. This study verified that garden space, regardless of whether time is objective or subjective, can create infinite space according to the consciousness or emotions of the human subject beyond the existence of physical space. Since garden space has a unique intimacy unlike urban space, this study presented the uniqueness of garden space with an approach that differs from previous studies on gardens.

Spatiotemporal Trends of Malaria in Relation to Economic Development and Cross-Border Movement along the China-Myanmar Border in Yunnan Province

  • Zhao, Xiaotao;Thanapongtharm, Weerapong;Lawawirojwong, Siam;Wei, Chun;Tang, Yerong;Zhou, Yaowu;Sun, Xiaodong;Sattabongkot, Jestumon;Kaewkungwal, Jaranit
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.3
    • /
    • pp.267-278
    • /
    • 2020
  • The heterogeneity and complexity of malaria involves political and natural environments, socioeconomic development, cross-border movement, and vector biology; factors that cannot be changed in a short time. This study aimed to assess the impact of economic growth and cross-border movement, toward elimination of malaria in Yunnan Province during its pre-elimination phase. Malaria data during 2011-2016 were extracted from 18 counties of Yunnan and from 7 villages, 11 displaced person camps of the Kachin Special Region II of Myanmar. Data of per-capita gross domestic product (GDP) were obtained from Yunnan Bureau of Statistics. Data were analyzed and mapped to determine spatiotemporal heterogeneity at county and village levels. There were a total 2,117 malaria cases with 85.2% imported cases; most imported cases came from Myanmar (78.5%). Along the demarcation line, malaria incidence rates in villages/camps in Myanmar were significantly higher than those of the neighboring villages in China. The spatial and temporal trends suggested that increasing per-capita GDP may have an indirect effect on the reduction of malaria cases when observed at macro level; however, malaria persists owing to complex, multi-faceted factors including poverty at individual level and cross-border movement of the workforce. In moving toward malaria elimination, despite economic growth, cooperative efforts with neighboring countries are critical to interrupt local transmission and prevent reintroduction of malaria via imported cases. Cross-border workers should be educated in preventive measures through effective behavior change communication, and investment is needed in active surveillance systems and novel diagnostic and treatment services during the elimination phase.

Spatiotemporal Changes of Temperature and Humidity in Lentinula edodes Cultivation Sheds (표고시설재배사내 시·공간적인 온·습도변화)

  • Ryu, Sung Ryul;Koo, Chang Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.468-475
    • /
    • 2005
  • To understand spatiotemporal changes of temperature and humidity in Lentimula edodes cultivation sheds, temperature, relative humidity were measured with HOBO H8 series sensors in log cultivation sheds and sawdust cultivation sheds. The results obtained from October in 2003 to October in 2004 were as follows; 1. Horizontal temperature changes were smaller at center of cultivation shed inside than comer of cultivation shed inside, while relative humidity changes were greater about 3% at center of cultivation shed inside than corner of cultivation shed inside. 2. Vertical temperature changes showed that the temperature was higher at above than at below when the temperature rises, while the temperature was lower at above than at below when the temperature falls. Thus close to soil surface temperature showed a little fluctuation. Vertical relative humidity changes showed that the relative humidity was lower at above than at below when the temperature rises, while the relative humidity was higher at above than at below when the temperature falls. After all temperature and relative humidity was the opposite in cultivation shed. 3. It's showed in log cultivation shed that the minimum temperature was a subzero temperature until the end of April, while the minimum temperature did above zero after the beginning of the May. Besides a winter was the greatest at daily temperature range during the four season, about $30^{\circ}C$. On the other hand the minimum relative humidity was less than 20% at April, May and June but more than 40% after May.

Spatiotemporal Analysis of Ship Floating Object Accidents (선박 부유물 감김사고의 시·공간적 분석)

  • Yoo, Sang-Lok;Kim, Deug-Bong;Jang, Da-Un
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1004-1010
    • /
    • 2021
  • Ship-floating object accidents can lead not only to a delay in ship's operations, but also to large scale casualties. Hence, preventive measures are required to avoid them. This study analyzed the spatiotemporal aspects of such collisions based on the data on ship-floating object accidents in sea areas in the last five years, including the collisions in South Korea's territorial seas and exclusive economic zones. We also provide basic data for related research fields. To understand the distribution of the relative density of accidents involving floating objects, the sea area under analysis was visualized as a grid and a two-dimensional histogram was generated. A multinomial logistic regression model was used to analyze the effect of variables such as time of day and season on the collisions. The spatial analysis revealed that the collision density was highest for the areas extending from Geoje Island to Tongyeong, including Jinhae Bay, and that it was high near Jeongok Port in the West Sea and the northern part of Jeju Island. The temporal analysis revealed that the collisions occurred most frequently during the day (71.4%) and in autumn. Furthermore, the likelihood of collision with floating objects was much higher for professional fishing vessels, leisure vessels, and recreational fishing vessels than for cargo vessels during the day and in autumn. The results of this analysis can be used as primary data for the arrangement of Coast Guard vessels, rigid enforcement of regulations, removal of floating objects, and preparation of countermeasures involving preliminary removal of floating objects to prevent accidents by time and season.

Numerical Simulation of Spatiotemporal Distribution of Chaff Clouds for Warship Defense using CFD-DEM Coupling (CFD-DEM 연동을 통한 함정용 채프운의 시공간 분포 해석)

  • Uk Jin Jung;Moonhong Kim;Dongwoo Sohn
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.93-103
    • /
    • 2023
  • Warships widely spread numerous chaffs using a blast, which form chaff clouds that create false radar cross-sections to deceive enemy radars. In this study, we established a numerical framework based on a one-way coupling of computational fluid dynamics and discrete element method to simulate the spatiotemporal distribution of chaff clouds for warships in the air. Using the framework, we investigated the effects of wind, initial chaff cartridge angle, and blast pressure on the distribution of chaff clouds. We observed three phases for the chaff cloud diffusion: radial diffusion by the explosion, omnidirectional diffusion by turbulence and collision, and gravity-induced diffusion by the difference in the fall speed. The wind moved the average position of the chaff clouds, and the diffusion due to drag force did not occur. The direction of radial diffusion by the explosion depended on the initial angle of the cartridge, and a more vertical angle led to a wider distribution of the chaffs. As the blast pressure increased, the chaff clouds spread out more widely, but the distribution difference in the direction of gravity was not significant.