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Fast Real-Time Cardiac MRI: 
a Review of Current Techniques and 
Future Directions

INTRODUCTION

Cardiac magnetic resonance imaging (MRI) is a valuable and powerful non-invasive 
imaging modality for evaluating the cardiovascular system. In particular, cardiac cine 
MRI is currently considered as the clinical standard for assessing global cardiac function 
and is increasingly used to measure regional cardiac function (1). To evaluate the rapid 
movements of myocardial wall and valves, conventional cardiac cine MRI acquisition 
relies on ECG gating (2) to generate images at different cardiac phases and requires 
breath holding to avoid respiratory motion artifacts. Using ECG-gated and breathhold 
acquisition techniques, data at the same cardiac phase but different cardiac cycles 
can be combined together to generate high-quality images with sufficient spatial and 
temporal resolution within a single breathhold. However, the use of standard ECG-gated 
and breathhold cardiac cine MRI is limited by two major challenges clinically. First, 
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Review Article Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-
invasive imaging technique for the assessment of global and regional cardiac 
function. Conventional cardiac MRI is limited by the long acquisition time, the need 
for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. 
Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data 
acquired continuously without synchronization or binning, and therefore of potential 
interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition 
and reconstruction techniques must be employed to facilitate real-time cardiac 
MRI. The goal of this study is to discuss methods that have been developed for real-
time cardiac MRI. In particular, we classified existing techniques into two categories 
based on the use of non-iterative and iterative reconstruction. In addition, we 
present several research trends in this direction, including deep learning-based image 
reconstruction and other advanced real-time cardiac MRI strategies that reconstruct 
images acquired from real-time free-breathing techniques.
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for patients with reduced breathholding capacity, cardiac 
cine images can be substantially degraded by respiration-
induced artifacts. Second, for patients with arrhythmias, 
ECG gating and data synchronization from different cardiac 
cycles is less reliable, resulting in motion artifacts such as 
ghosting and/or blurring.

Alternatively, cardiac cine MR images can also be acquired 
continuously and with cardiac phases of each heartbeat 
reconstructed separately without combining data from 
different heartbeats into the same image (3, 4). ECG gating 
is then not needed. The reconstructed images represent 
the true physiological cardiac movement in real time. This 
technique, known as real-time cardiac MRI, has attracted 
substantial attention in the field due to its improved 
robustness. Unfortunately, acquiring multiple cardiac phases 
(e.g., 15-25) within one cardiac cycle is very challenging 
due to the slow imaging speed of MRI, which limits the 
spatiotemporal resolution compared with the conventional 
ECG-gated and breathhold counterpart. To achieve the 
desired spatiotemporal resolution, highly-accelerated data 
acquisition is needed, which requires special strategies to 
reconstruct the undersampled cardiac MRI data.

This review article aims to provide a brief overview of 
image acquisition and reconstruction methods that have 
been proposed for real-time cardiac MRI. We classified the 
existing real-time cardiac cine methods into two categories 
based on the need for iterative reconstruction. Finally, we 
discuss current research trends in this direction, including 
deep learning-based image reconstruction and other more 
advanced real-time cardiac MRI strategies. Note that the 
terminology “real-time” is often used elsewhere in a stricter 
sense, which also requires real-time image reconstruction 
available for immediate use with low latency (5). We will 
focus on the more general concept in this review.

Accelerated Real-Time Cardiac MRI Using Non-
Iterative Reconstruction Techniques

Parallel Imaging and k-t Techniques

Parallel imaging (PI) has been developed for accelerating 
MRI acquisition (6-8) more than two decades ago. Based on 
complementary information acquired from multiple receiver 
coil arrays, parallel imaging techniques, such as SENSitivity 
Encoding (SENSE) and GeneRalized Autocalibrating 
Partial Parallel Acquisition (GRAPPA), normally achieve 
an acceleration factor of 2-4. The earliest application of 

SENSE in real-time cardiac MRI has been reported (9) using 
an acceleration factor of 3.2. Conventional PI needs to 
determine the prior information needed for reconstruction, 
namely, the coil sensitivity maps for SENSE (7) or the 
reconstruction weights for GRAPPA (8). Both are usually 
obtained from a low-resolution calibration scan. The 
temporal SENSE (TSENSE) (10) and GRAPPA (TGRAPPA) (11) 
techniques avoid the above calibration acquisition steps by 
applying a sliding window reconstruction to the dynamic 
k-space to obtain a set of fully sampled high-resolution 
images (but with a lower temporal resolution). Following 
estimation of the prior information for parallel imaging 
from these high-resolution images, each time frame can 
then be separately reconstructed with either SENSE or 
GRAPPA.

Methods that jointly utilize spatiotemporal redundancy 
have also been developed. These methods are typically 
referred to as "k-t techniques", which can also be further 
combined with parallel imaging. The representative non-
iterative k-t techniques include UNFOLD (12), k-t BLAST (13), 
k-t PCA (14) and others (15, 16). K-t techniques usually 
convert the undersampled data from k-t space to x-f space, 
where x and f represent the spatial position and temporal 
frequency, respectively, eliminating the aliasing artifacts in 
the x-f space and transforming the data into dynamic images. 
They can be further combined with parallel imaging methods, 
such as the k-t SENSE (13) and k-t GRAPPA (17) techniques. 
Although an acceleration factor of around 8 can be achieved 
using the combined k-t technique with parallel imaging, they 
also introduce temporal blurring at high acceleration rates. 
A comprehensive review of the k-t techniques (including the 
iterative ones) has been published (18).

However, non-Cartesian trajectories, such as radial (19) 
or spiral (20) sampling, facilitate a more efficient coverage 
of k-space, and are more robust to motion artifacts. In 
the following section, we will introduce the combination 
of non-Cartesian trajectories with GRAPPA for real-time 
cardiac MRI.

Real-Time Cardiac MRI via Through-Time Non-
Cartesian GRAPPA

GRAPPA is an auto-calibrating coil-by-coil reconstruction 
method used in parallel imaging. Basically, GRAPPA is used 
to estimate the missing k-space as an interpolation, i.e., the 
missing k-space data (the target points) can be determined 
by a weighted linear combination of acquired k-space 
points (neighborhood) from all coils (21).
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We formulated the estimated target information using a 
notation reported previously (22):

targ,j (kx, ky + δky) = ∑  ∑τx ∑τy n (i, j, τx, τy) · Ssrc,i 
(kx + τx, ky + τy)  [1],

where targ,j (kx, ky+δky) is the target k-space data to be 
estimated in the jth coil and at location (kx, ky+δky), targ,j 
(kx+τx, ky +τx) denotes a source point in the kernel from coil 
i, whereas τx and τy indicate the positions in the kernel, and 
n(i,j,τx,τy) represents the value of the GRAPPA weight set for 
the proper target and source coils and position.

The above GRAPPA weight is estimated from the 
additional fully-sampled auto-calibration k-space lines 
(known as auto-calibration signals, ACS). In ACS, both the 
source and target points are known:

starg,j (kx,ky+δky) = ∑  ∑τx ∑τy n (i, j, τx, τy) · Ssrc,i 
(kx + τx, ky + τy) [2], 

where starg,j is the known target k-space value. All the source 
and target points in the ACS are then used to calculate the 
GRAPPA weight and the number of kernels should be large 
enough to ensure the accuracy of the calibration equation 
is well determined.

For Cartesian GRAPPA with regular undersampling, a 
single kernel can be used and the kernel weights can be 
estimated from the ACS data. However, for undersampled 

non-Cartesian imaging, such as radial GRAPPA, multiple 
kernels are needed due to the variation in the degree and 
direction of undersampling (22). In this case, fully sampled 
k-space instead of ACS data are needed for calibration. As 
shown in Figure 1a, the fully-sampled k-space is divided 
into multiple k-space segments and the set of GRAPPA 
weights is calculated for each segment individually. This 
is so called segmented k-space calibration. To allow for 
accurate determination of the weights, a small segment 
size is needed, suggesting the need for additional sets 
of GRAPPA weights (unknowns) estimated through the 
k-space, resulting in inaccurate estimation. To improve the 
conditioning, a through-time GRAPPA calibration is used 
in which multiple fully-sampled k-space data along time 
are acquired and utilized to determine the GRAPPA weights 
for each segment. Figure 1b presents the basic idea of the 
above calibration. Note that the fully-sampled k-space 
requires the same trajectory and should specifically cover 
the radial angles for undersampled acquisitions. When only 
the through-time calibration is used, the number of frames 
can be up to 350 to 400, i.e., more than 1 min for an in-
plane resolution of 2.34 × 2.34 mm2 for cardiac imaging 
(22). To reduce the calibration time/frames, a hybrid 
segmented (through k-space) and through-time calibration 
is employed for real-time cardiac imaging. Figure 2 
illustrates sample real-time cardiac images reconstructed 
from data containing 14 radial projections/frame with a 
spatial resolution of 2.34 mm2 and a temporal resolution of 

Fig. 1. (a) Segmented (through k-space) GRAPPA calibration (b) Through-time GRAPPA calibration. Note that all the fully-
sampled k-space contains the same trajectory in (b) and covers the radial angles for undersampled acquisitions. A hybrid 
version of both calibration strategies is utilized in real-time cardiac imaging. Images were obtained from Figs. 1 and 2 in 
Seiberlich et al. Magn Reson Med  2011;65:492-505, and reproduced with permission.

a b



255www.i-mri.org

https://doi.org/10.13104/imri.2021.25.4.252

40 ms/frame. The calibration parameters included 25 frames 
(requiring a scan time of 9.94s), and k-space segments with 
a size of 8 × 4 (read × projection) .

A spiral version of through-time GRAPPA has also 
been proposed for real-time cardiac imaging (23). Spiral 
trajectory covers the k-space more efficiently than a radial 
scan. Thus, it can achieve a higher spatiotemporal resolution 
than radial sampling within the same amount of time. A 
temporal resolution of 18 ms/image has been demonstrated 
for real-time cardiac imaging (23). Compared with radial 
imaging, spiral imaging may introduce off-resonance 
artifacts due to the use of a long readout. Moreover, it is 
difficult to perform a thorough k-space calibration as the 
spiral arms do not "line up" like the radial trajectories (23). 
To facilitate accurate calibration, additional through-time 

acquisitions of the fully-sampled dataset are then needed.

Accelerated Real-Time Cardiac MRI Using 
Iterative Reconstruction Techniques

Non-Cartesian Iterative SENSE

Alternatively, the MR signal equation for parallel imaging 
can be interpreted as a nonlinear equation with an operator 
E mapping both the image content m and coil sensitivity 
maps (c1,…cN)T to the measured data y:

y=E(x),with x=  and E:x →  [3], 

Fig. 2. Sample images reconstructed 
from data containing 12 projections/
frame with a spatial resolution 
of  1 .56 mm2 and a  tempora l 
resolution of 36 msec/frame. Hybrid 
radial GRAPPA was used with 75 
calibration frames (requiring a 
calibration scan time of 32.4 sec), 
and 8 × 1 sized k-space segments. 
Images were sourced from Fig. 10 
in Seiberlich et al. Magn Reson Med 
2011;65:492-505, and reproduced 
with permission.
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where y is the k-space data, F  represents the Fourier 
transform, P denotes sampling pattern, ci indicates the ith 
coil sensitivity map, and m refers to the desired image to be 
reconstructed. Since both image content and coil sensitivity 
maps are unknown, parallel imaging is intrinsically a 
nonlinear (bi-linear) inverse problem. The SENSE method 
reduces the nonlinear challenge to a linear problem by 
first estimating coil sensitivities using calibration data and 
then reconstructing the image content in a linear manner. 
Thus, the two-step autocalibrating SENSE method involves 
1) determination of coil sensitivity maps from ACS lines, 
followed by 2) linear reconstruction of image content. 
Several methods are available for the calibration of coil 
sensitivity maps. Two representative techniques include 
the adaptive method (24) and ESPiRiT (21). Following coil 
calibration, the reconstruction problem can be formulated 
as:

 = ||y - E(m)||  + λ · R(m) [4],

where R(·) defines the regularization term with λ  the 
regularization parameter. The above model allows an easier 

extension to non-Cartesian trajectories (25) via adaption 
of the sampling pattern P in equation [3]. In the original 
implementation, R(·) was selected as the Tikhonov (L2) 
regularization to stabilize the reconstruction (i.e., to reduce 
noise):

R(m) = ||m||   [5]

The above equation [4] can then be effectively solved 
using the conjugate gradient algorithm. Figure 3 illustrates 
real-time cardiac imaging using the SENSE method to 
achieve a temporal resolution of 56 ms with a spiral 
trajectory using four coils.

Regularized Nonlinear Inversion

An extension of the SENSE method is to jointly estimate 
both image content and coil sensitivity from the acquired 
data without any calibration step. This category includes 
mainly two methods. First, the joint SENSE (JSENSE) (26) 
technique, which formulates image reconstruction and coil 
sensitivity maps as an alternative minimization problem, 

Fig. 3. Real-time cardiac imaging. Sensitivity-encoded heart imaging with four coils, using a real-time spiral protocol. (a) 
Conventional reconstruction from fully-Fourier-encoded data obtained with four successive spiral interleaves. (b) Images 
obtained from the same data via sensitivity-based reconstruction using only two successive interleaves for each image. Thus, 
the scan time per image was reduced from 112 ms to 56 ms. Images were obtained from Fig. 6 in Pruessmann et al. Magn 
Reson Med 2001;46:638-651, and reproduced with permission from the journal.

b

a
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i.e., the optimization of image and coil sensitivity maps 
was performed in an alternative manner, resulting in a 
linear inverse relationship at each iteration step. Moreover, 
JSENSE employs a polynomial model to smoothen the coil 
sensitivity maps. Second, the regularized nonlinear inversion 
(NLINV) (27) method is used to formulate the reconstruction 
of both image and coil sensitivity maps as a more general 
nonlinear inverse problem using a Newtonian method. The 
cost function for NLINV can be written as:

 = ||y - E(x)||  + λ · R(x) [6]

with the unknown x containing both image and coil 
sensitivity maps. The above nonlinear equation is then 
solved by the iteratively regularized Gauss-Newton method 
(IRGNM) (28, 29), which linearizes and solves the nonlinear 
equation at each Gauss-Newton step, i.e.,

k+1 = ||y - (DE(xk)(x-xk) + E(xk))  + λk · R(x) [7], 

where DE(xk) is the Fréchet derivative of E at the current 
estimate xk and the regularization parameter λk is reduced 
in each Gauss-Newton step, i.e., λk = λo · q

k with λo = 1 
and q∈(0,1). Notably, equation [3] represents a nonlinear 
problem that is highly underestimated even for the fully 
sampled case. A direct application of IRGNM to the above 
nonlinear problem would therefore result in an unrealistic 
solution. To overcome this problem, NLINV introduces the 
Sobolev regularization to penalize the high frequency of the 
coil sensitivities (enforce smoothness), i.e.,

R(ci) = ||(1 + s|| ||2)l/2 Fci||
2 [8],

with || || defining the distance to the k-space center, while 
s and l represent positive constants. A reasonable value for 
s and l would be s = 400 mm2 and l = 16. Further, the L2 
regularization is applied to both image and coil sensitivity 
maps. For real-time applications, the L2 regularization also 
incorporates the difference between the current image 
frame with respect to a weighted previous frame, i.e.,

R(x) = ||x-w · xt-1||  [9],

with w denoting the weighting parameter, which is often 
in the range of (0.5, 1.0) (30) and xt-1 represents the image 
from a previous frame. Equation [7] can be analyzed and 
rewritten as:

k+1 = (DEH (xk)DE(xk) + λk I)
-1

(DEH (xk)(y-E(xk)+DE(xk)xk) + λk · w · xt-1) [10],

with I denoting the identity matrix. Equation [10] can be 
effectively solved using the conjugate gradient algorithm 
as well. When extending from Cartesian to non-Cartesian 
trajectories, NLINV uses the convolution-based gridding 
technique (31) for efficient computation of graphical 
processing units (GPUs) (32).

Figure 4 illustrates real-time cardiac MR imaging using 
undersampled radial FLASH and NLINV at the middle short-
axis of the left ventricle (33). The data were acquired 
continuously at a spatial resolution of 1.5 × 1.5 × 8 mm3 

and with a TR/TE value of 2.2/1.4 ms, flip angle 8°, and 15 
spokes per frame (temporal resolution 33 ms).

Compared with SENSE-based approach, the NLINV-
based method avoids calibration errors by jointly estimating 
both images and coil sensitivity maps based on similar 
data. This approach enhances the value of NLINV in real-
time applications, especially for acquisitions during free 
breathing, dynamic contrast changes or rapid changes 
in the imaging plane, such as interactive cardiac MRI 
(34, 35). A recent clinical study of patients with heart 
failure manifesting preserved ejection fraction (HFpEF)-
Stress suggested that the NLINV-based real-time CMR 
technique allows highly accurate identification of HFpEF 
during physiological exercise and may qualify as a 
suitable noninvasive diagnostic alternative to invasive 
catheterization (36). Moreover, the efficient implementation 
of NLINV with multiple GPUs (37) not only enables the 
real-time acquisition of MRI data but also allows real-time 
image reconstruction, i.e., reconstructed NLINV images 
are available for immediate use with low latency (5). In 
addition, the general framework in the forward model 
also enables the extension of NLINV for more advanced 
nonlinear reconstruction incorporating MR physical models 
in the forward model for efficient quantitative imaging (38-
42). Real-time MRI based on the NLINV framework has been 
reviewed recently (3).

Compressed Sensing

Compressed sensing (CS) (43, 44) is a powerful technique 
for image acceleration and has been widely used in both 
static and dynamic MR imaging (45-48). The success of 
CS MRI relies on three basic components: 1) sparsity or 
transform sparsity of the target image; 2) incoherent 
sampling where the incoherence is assessed based on 
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sampling and sparsity; and 3) a nonlinear reconstruction 
algorithm to solve the regularized inverse problem.

In practice, an MR image is not necessarily sparse by itself. 
Images need to be subjected to specific transformations 
such as finite differences or wavelets to generate a sparse 
representation. For dynamic imaging, the temporal sparsity 
can be additionally exploited. In contrast to regular 
undersampling, incoherent undersampling generates noise-
like incoherent artifacts, which can then be iteratively 
reduced in a nonlinear reconstruction step. For Cartesian 2D 
imaging, incoherence can be achieved via sampling pattern 
design along the phase encoding direction. However, non-
Cartesian trajectories such as radial and spiral sampling 
exhibit intrinsic incoherence greater than the Cartesian 

type. Furthermore, higher incoherence can be achieved in 
3D or dynamic imaging as the additional dimension provides 
an extra degree of freedom for designing sampling patterns.

CS has been combined with the aforementioned 
parallel imaging (46, 49, 50) as well as k-t techniques for 
accelerated imaging (48-55). In the following, we will focus 
on the k-t SPARSE-SENSE method (56), which belongs to 
iterative k-t techniques, and has been demonstrated in real-
time cardiac MRI.

K-t SPARSE-SENSE exhibits a pseudo-random variable-
density trajectory and varies the sampling pattern along 
time to achieve incoherence in k-t space. A sampling 
example is presented in Figure 5. Similar to the k-t 
techniques introduced before, the k-t SPARSE-SENSE 

Fig. 4. Real-time radial FLASH CMR at 1.5 mm spatial resolution and 33 ms temporal resolution. The data was acquired 
continuously with TR/TE = 2.2/1.4 ms, flip angle 8°, 15 radial spokes per frame. Images were obtained from Fig. 7 in Zhang 
et al. J Cardiovasc Magn Reson 2010;12:39, and reproduced with permission from the journal.
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approach also converts data from k-t space to x-f space. 
Here f can be an arbitrary sparsity transform, such as 
temporal fast Fourier transform (FFT), temporal principal 
component analysis (PCA) or temporal total variation (TV). 
In the x-f space, the images lie in compact regions while 
the incoherent artifacts are randomly distributed. As a 
result, the reconstruction can separate the true image and 
the artifacts iteratively (18). Mathematically, with the series 
of dynamic images unknown, the reconstruction problem 
can be written as:

 = ||y - E(m)||  + λ · R(m) [11],

with m = (m1,…mn)
T representing the image series for 

reconstruction. The regularization term is derived using the 
formula below:

R(m) = ||T(m)||1 + α · ||Wm||1 [12]

Here, T is a temporal sparsity transform, which may be 
a temporal PCA, temporal FFT or temporal TV, W denotes 
the spatial wavelet transform and α  is the weighting 
parameter balancing the effects of the two regularization 
terms. Various techniques can be used to solve the above 
sparsity-constrained inverse problem, i.e., equation [11]. 
Representative methods include nonlinear conjugate 
gradient (57), (Fast) iterative shrinkage-thresholding 
algorithm (58, 59) and alternating direction method of 
multipliers (ADMM) (60). Figure 6 illustrates end-diastolic 

and end-systolic events at multiple cardiac phases with 
comparable image quality using breathhold cine MRI and 
real-time cine MRI with k-t SPARSE-SENSE.

In contrast to the aforementioned iterative methods 
used to reconstruct a single image at one time, the k-t 
SPARSE-SENSE can be used to estimate the entire image 
series as an inverse problem based on thew spatiotemporal 
sparsity in the additional time dimension. However, SENSE/
NLINV-based approach can be used in real-time interactive 
applications as it only needs data acquired before the 
current frame (causal) without waiting for subsequent data 
acquisition.

Aside from the combined temporal sparsity and the 
spatial L1-Wavelet regularization demonstrated in 
equation [12], other sparsity transforms such as 3D Haar 
wavelets (61) have also been utilized to exploit the spatial-
temporal sparsity in the 2D+t cardiac data. More advanced 
regularization, such as non-local patch-based (62) or 
dictionary-based (63-65) regularization may also be used 
for real-time cardiac imaging.

Other CS-based imaging technique for real-time cardiac 
MRI is the low-rank (66, 67) or joint low-rank and sparsity 
constraint (68, 69)-based approaches. This type of method 
is based on the theoretical framework considering the k-t 
space as partially separative along the spatial and temporal 
dimensions (70), resulting in a rank-deficient matrix. 
Therefore, reconstruction of the dynamic data can be 
formulated as a low-rank matrix recovery problem, which 
can be solved using low-rank recovery techniques. The k-t 

Fig. 5. (a) Eight-fold accelerated ky-t sampling pattern variation with time. (b) A schematic representation of the average 
kx-ky-t sampling pattern over time resulting in kx-ky sampling pattern, which represents the sampling used to perform self-
calibration of coil sensitivities (see Fig. 6 for cross-reference). White lines represent acquired samples. Images were obtained 
from Fig. 1 in Feng et al. Magn Reson Med 2013;70:64-74, and reproduced with permission from the journal.

a b
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signal can be arranged in a matrix form, where the rows 
correspond to the k-space points and the columns represent 
the time samples as in the partially separative function (PSF) 
model (70):

Γ = 
y(k1, t1 ) … y(k1, tT)

y(kM, t1) … y(kM, tT)

with M the number of k-space points and T the number of 
time points. Due to the strong spatial-temporal correlations, 
the above matrix has a low-rank property. i.e.,

rank(Γ) ≤ L,

with a small L value, suggesting fewer degrees of freedom 
than the total number of elements in Γ . In addition to 
the low rank, sparsity constraints along both spatial and 
temporal dimensions can be further exploited (68), resulting 
in the following optimization problem:

 = ||y - E(m)||  + μ · ||Γ||* + λ · R(m) [13],

where ||·||* is the nuclear norm and R(·) represents spatial 
and temporal regularization. The above optimization 

Fig. 6. (Rows 1, 2) End-diastolic and (rows 3, 4) end-systolic images at multiple cardiac phases comparing (rows 1 and 3) 
breathhold cine MRI and (rows 2 and 4) real-time MRI. Both image sets were acquired from a 29-year-old (male) healthy 
subject. Real-time MRI yielded average scores of 3.25, 4.3, 2.6, and 2.4 for image quality, temporal fidelity, artifact, and noise 
level, respectively, whereas the corresponding scores for breathhold cine MRI were 4.9, 5, 1.1, and 1.1, respectively. BH = 
breathhold; RT = real-time. The breathhold cine MR images exhibited higher spatial resolution than real-time MR images (1.6 
mm vs. 2.3 mm, respectively). Images were sourced from Fig. 7 in Feng et al. Magn Reson Med 2013;70:64-74, and reproduced 
with permission from the journal.
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problem can be solved using a variable splitting algorithm 
proposed previously (68). The joint low-rank and sparsity 
constraints may lead to a higher acceleration factor than 
the low-rank constraints alone in real-time cardiac imaging 
(68, 69).

Future Directions

The focus of the present review is mainly on fast imaging 
methods designed to reconstruct real-time cardiac cine 
images without synchronizing or exploiting multi-heartbeat 
information. Since commonly used cardiac cine MRI 
sequences usually need time to achieve a steady state, 
practical real-time cardiac MRI acquisition is typically 
performed for two heartbeats, with the first heartbeat used 
to achieve a steady state and the second heartbeat utilized 
for data acquisition. Following data acquisition, the first 
heart beat can simply be discarded and a dynamic cardiac 
cine image series can be reconstructed from the second 
heartbeat. In this acquisition scheme, the respiratory motion 
need not be considered given the short acquisition time. In 
addition, several advanced methods for fast cardiac MRI 
are available to reconstruct cardiac cine images using data 
derived from multiple cardiac cycles. Strictly speaking, these 
methods do not belong to real-time cardiac MRI because they 
combine data from multiple cycles. However, they are briefly 
discussed to provide a future research direction and trend.

First, motion-correction techniques (71-75) consider 
motion in the reconstruction of cardiac cine MRI using 
data from more than one cardiac cycle. In this method, 
the respiratory motion is first estimated using images 
reconstructed with a moderate temporal window, e.g., a 
window size with a RR interval. Subsequently, the estimated 
motion field is incorporated into the forward model 
(equation [3]) in the iterative image reconstruction. As an 
example, the combination of a motion-correction technique 
using optical flow with the SPIRiT non-linear reconstruction 
using temporal regularization was used for multiple heart-
beat reconstruction in cardiac cine imaging with high 
spatial (1.3-1.8 × 1.8-2.1 mm2) and temporal resolution 
(retrospectively gated, 30 cardiac phases, temporal 
resolution 34.3 ± 9.1 ms) (73).

Second, multi-dimensional methods which combine non-
Cartesian sampling, self-gating and motion-resolved image 
reconstruction have gained a lot of interest recently (76-83). 
The representative techniques include golden-angle radial 
sparse parallel (GRASP) (76), XD-GRASP (77), SmooThness 

Regularization on Manifolds (SToRM) (78) and MR 
multitasking (79-81). GRASP is an extension of k-t SPARSE-
SENSE to non-Cartesian trajectories, in particular gold-angle 
radial sampling (84). XD-GRASP further extends GRASP to 
multidimensional reconstruction with an extra-respiratory 
dimension to avoid explicit motion correction. Following 
self-gating (85) based on radial k-space center signals 
and sorting the data into multiple cardiac and respiratory 
phases, XD-GRASP imposes additional temporal sparsity 
constraints along both respiratory and cardiac dimensions 
to improve the reconstruction performance. This method 
can be used for cardiac imaging at a spatial resolution of 2 
× 2 mm2 and a temporal resolution of 45 ms via continuous 
radial acquisitions. The SToRM technique models the 
dynamic image frames as points on a smooth and low 
dimensional non-linear manifold considering each image 
frame in the dataset as a non-linear function based on a 
few physiological parameters (e.g., cardiac and respiratory 
phase in real-time cardiac cine). In contrast to the temporal 
regularization used in XD-GRASP, the SToRM employs a 
manifold smoothness regularization to reconstruct the 
entire dynamic images. MR multitasking is another type of 
multi-dimensional approach, which incorporates not only 
physiological parameters such as respiratory and cardiac 
motion, but also other dynamic physical parameters (T1, 
T2 relaxation) into the reconstruction. Since this additional 
dimension is also distinct, the new high-dimensional 
data are ranked lower to facilitate the reconstruction of 
large images via a low-rank tensor-based approach. This 
technique enables time-resolved cardiac T1, T2, and ECV 
mapping without the use of ECG triggering or breathholds. 
Notably, all the above methods rely on accurate and 
robust motion signal estimation, which can be achieved 
by applying band-pass filter (85), and techniques such as 
PCA (77), adapted singular spectrum analysis (SSA) (86) to 
reduce dimensionality of auto-calibration (AC) data from 
certain receiver coils.

Third, deep learning (DL)-based approaches (87-96) 
represent a new trend in accelerated MR imaging in 
which the handcrafted sparsity transform (TV, Wavelet) is 
replaced by convolutional neural network (CNNs), where the 
model parameters can be learned from reference training 
data. Moreover, the iterative algorithms used in CS-like 
reconstruction can be expressed as a neural network (92), 
i.e., each layer in the network represents an iteration step of 
an iterative algorithm (88). Thus, the DL reconstruction can 
be performed by updating the network parameters in each 
iteration step. The main advantages of DL-based approaches 
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are two-fold. First, the learned regularizer is tailored for 
a specific task and is therefore expected to effectively 
eliminate residual artifacts compared with a handcrafted 
regularizer. Second, once the network has been trained 
and the weights are estimated, effective reconstruction 
can enhance the computational speed compared with 
regularized reconstructions (92). Application of DL to 
accelerated cardiac imaging was reported by Schlemper 
et al. (89), who proposed a deep cascade of CNN to learn 
spatiotemporal correlations by combining convolution and 
data-sharing approaches. Their network outperforms the 
CS-like approaches and resulted in a 9-fold acceleration 
using Cartesian sampling. Interestingly, a 3D (2D plus time) 
residual U-Net was trained to eliminate the artifacts (96). 
An acceleration factor of 13 was achieved using a tiny 
golden-angle radial bSSFP acquisition (97).

Summary

In summary, this brief review introduces two main 
categories of reconstruction methodology developed in 
the last two decades to accelerate real-time cardiac cine 
MRI. The first category entails non-iterative imaging 
reconstruction using linear reconstruction algorithms 
generally. In particular, the more recent through-time 
GRAPPA approach has attracted substantial attention. 
Despite the need for a relatively long calibration acquisition, 
the combination of non-Cartesian sampling and GRAPPA 
yielded reasonable spatiotemporal resolution in an 
acceptable time for real-time cardiac imaging. The second 
category involves iterative reconstruction approaches. 
Starting from non-Cartesian iterative SENSE, which is one 
of the earliest applications of parallel imaging techniques 
to real-time cardiac cine MRI, we proceeded to the NLINV 
method, which can be considered as an extension of 
iterative SENSE by jointly estimating both image content 
and coil sensitivity maps, and regularization to adjust for 
the differences between the current image frame to the 
previous one, facilitating real-time applications. NLINV 
enables applications with changing coil sensitivity maps 
due to variation in breathing or contrast. NLINV can also 
be used to reconstruct images in real time for interactive 
MRI applications. Furthermore, we illustrated the role 
of CS in accelerating real-time cardiac imaging. Instead 
of reconstructing a single image, one of the CS-based 
techniques known as k-t SPARSE-SENSE can be used for 
the reconstruction of an entire image series as a single 

inverse problem based on the spatial and temporal sparsity 
of the data. Moreover, the low-rank property inspired by the 
partially separable function model can be further utilized in 
accelerated dynamic MR imaging. In addition, we discussed 
several interesting trends including: 1) motion-corrected 
image reconstruction, which incorporates respiratory 
motion fields into image reconstruction for acceleration; 2) 
large-dimensional techniques exploiting higher dimensions 
such as motion and contrast sparsity in reconstruction; 
and 3) DL-based reconstruction. In conjunction with 
existing techniques such as parallel imaging, non-Cartesian 
trajectories and CS  may further enhance the efficiency of 
real-time cardiac imaging at high spatiotemporal resolution.
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