DOI QR코드

DOI QR Code

Numerical Simulation of Spatiotemporal Distribution of Chaff Clouds for Warship Defense using CFD-DEM Coupling

CFD-DEM 연동을 통한 함정용 채프운의 시공간 분포 해석

  • Uk Jin Jung (Department of Mechanical Engineering and Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime & Ocean University) ;
  • Moonhong Kim (Division of Mechanical Engineering, Korea Maritime & Ocean University) ;
  • Dongwoo Sohn (Division of Mechanical Engineering, Korea Maritime & Ocean University)
  • 정욱진 (한국해양대학교 기계공학과 및 해양신재생에너지융합전공) ;
  • 김문홍 (한국해양대학교 기계공학부 ) ;
  • 손동우 (한국해양대학교 기계공학부 )
  • Received : 2023.02.07
  • Accepted : 2023.02.16
  • Published : 2023.04.30

Abstract

Warships widely spread numerous chaffs using a blast, which form chaff clouds that create false radar cross-sections to deceive enemy radars. In this study, we established a numerical framework based on a one-way coupling of computational fluid dynamics and discrete element method to simulate the spatiotemporal distribution of chaff clouds for warships in the air. Using the framework, we investigated the effects of wind, initial chaff cartridge angle, and blast pressure on the distribution of chaff clouds. We observed three phases for the chaff cloud diffusion: radial diffusion by the explosion, omnidirectional diffusion by turbulence and collision, and gravity-induced diffusion by the difference in the fall speed. The wind moved the average position of the chaff clouds, and the diffusion due to drag force did not occur. The direction of radial diffusion by the explosion depended on the initial angle of the cartridge, and a more vertical angle led to a wider distribution of the chaffs. As the blast pressure increased, the chaff clouds spread out more widely, but the distribution difference in the direction of gravity was not significant.

수많은 함정용 채프들은 폭발에 의해 확산되어 채프운을 형성하며, 채프운은 허위 레이더 반사 단면적을 생성하여 적의 레이더를 기만한다. 본 논문에서는 전산유체역학-이산요소법 단방향 연동 기법을 기반으로 공기 중에 분포하는 함정용 채프운의 시공간 분포를 해석하는 수치적 프레임워크를 구축하고 바람의 방향과 속도, 채프 카트리지의 초기 각도와 폭발 압력이 채프운 분포에 미치는 영향을 분석하였다. 채프운의 확산은 폭발에 의한 방사형 확산, 난류와 충돌에 의한 전 방향 확산, 낙하 속도 차이에 의한 중력 방향 확산과 같이 세 단계로 구분되는 것을 확인하였다. 바람은 채프운의 평균 위치를 이동시켰으며, 항력에 의한 확산 효과는 나타나지 않았다. 카트리지 초기 각도에 따라 폭발에 의한 방사형 확산 방향이 달라졌으며, 각도가 지면과 수직에 가까울수록 더 넓게 확산되었다. 폭발 압력이 증가할수록 채프운은 더 넓게 확산되었으나 중력 방향으로는 분포 차이가 작았다.

Keywords

Acknowledgement

이 연구는 광역방어 특화연구센터 프로그램의 일환으로 국방과학연구소와 방위사업청의 지원으로 수행되었습니다.

References

  1. Bae, J.-Y., Bae, H.M., Kim, J., Jung, D.Y., Cho, H.H. (2017) Effect of Evasive Maneuver Against Air to Air Infrared Missile on Survivability of Aircraft, J. Comput. Struct. Eng. Inst. Korea, 30(6), pp.501~506. https://doi.org/10.7734/COSEIK.2017.30.6.501
  2. Bendayan, M., Garcia, A. (2015) Signal Modeling of Chaff in Naval Environment Simulation, IEEE Trans. Aerosp. Electron. Syst., 51(4), pp.3161~3166. https://doi.org/10.1109/TAES.2015.140922
  3. Chae, G.-S., Lim, J.-S., Kim, Y.-H. (2017) A RCS Investigation of Multiple Chaff Clouds using Probability Distribution Characteristics, J. Converg. Inf. Technol., 7, pp.37~42.
  4. Cundall, P.A., Strack, O.D.L. (1979) A Discrete Numerical Model for Granular Assemblies, Geotech., 29(1), pp.47~65. https://doi.org/10.1680/geot.1979.29.1.47
  5. Di Renzo, A., Di Maio, F.P. (2004) Comparison of Contact-force Models for the Simulation of Collisions in DEM-based Granular Flow Codes, Chem. Eng. Sci., 59(3), pp.525~541. https://doi.org/10.1016/j.ces.2003.09.037
  6. Huang, H., Tong, Z., Chai, S., Zhang, Y. (2018) Experimental and Numerical Study of Chaff Cloud Kinetic Performance under Impact of High Speed Airflow, Chin. J. Aeronaut., 31(11), pp.2080~2092. https://doi.org/10.1016/j.cja.2018.08.002
  7. Jones, W.P., Launder, B.E. (1972) The Prediction of Laminarization with a Two-equation Model of Turbulence, Int. J. Heat Mass Transf., 15(2), pp.301~314. https://doi.org/10.1016/0017-9310(72)90076-2
  8. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S. (2012) Models, Algorithms and Validation for Opensource DEM and CFD-DEM, Prog. Comput. Fluid Dyn., 12(2~3), pp.140~152. https://doi.org/10.1504/PCFD.2012.047457
  9. Kwon, S. (2017) Study on the Empirical Equations for Pressure Curve by Air Blast, J. Korea Soc. Explos. Blast. Eng., 35(1), pp.1~17.
  10. Lee, S.-H., Kim, H.-S. (2021) Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases, J. Comput. Struct. Eng. Inst. Korea, 34(1), pp.1~8. https://doi.org/10.7734/COSEIK.2021.34.1.1
  11. Pandey, A.K. (2013) Modeling and Simulation of Chaff Cloud with Random Orientation and Distribution, IEEE MTT-S Int. Microw. RF Conf., pp.1~4.
  12. Pinchot, J.L., Bechu, O., Pouliguen, P. (2005) A Chaff Cloud Modelisation, 11th Int. Symp. Antenna Technol. Appl. Electromagn., pp.1~4
  13. Schleher, D.C. (1986) Introduction to Electronic Warfare, Artech House, Dedham, Massachusetts, p.576.
  14. Seo, D.W., Nam, H.J., Kwon, O.J., Myung, N.H. (2012) Dynamic RCS Estimation of Chaff Clouds, IEEE Trans. Aerosp. Electron. Syst., 48(3), pp.2114~2127. https://doi.org/10.1109/TAES.2012.6237582
  15. Sohaimi, A.S.M., Risby, M.S., Ishak, S.A.F.M., Khalis, S., Norazman, M.N., Ariffin, I., Yusof, M.A. (2016) Using Computational Fluid Dynamics (CFD) for Blast Wave Propagation under Structure, Procedia Comput. Sci., 80, pp.1202~1211. https://doi.org/10.1016/j.procs.2016.05.463
  16. Tian, W., Qi, L., Zhou, J., Liang, J., Ma, Y. (2015) Representative Volume Element for Composites Reinforced by Spatially Randomly Distributed Discontinuous Fibers and Its Applications, Compos. Struct., 131, pp.366~373. https://doi.org/10.1016/j.compstruct.2015.05.014
  17. Wang, B., Yang, Y., Huang, H. (2019a) Aerodynamic Characteristics Calculation and Diffusion Law Analysis of Rectangular-chaff Clouds under Airflow, Comput. Model. Eng. Sci., 118(3), pp.649~678. https://doi.org/10.31614/cmes.2019.05671
  18. Wang, Z., Liu, M. (2020) Semi-resolved CFD-DEM for Thermal Particulate Flows with Applications to Fluidized Beds, Int. J. Heat Mass Transf., 159, p.120150.
  19. Wang, Z., Teng, Y., Liu, M. (2019b) A Semi-resolved CFD-DEM Approach for Particulate Flows with Kernel Based Approximation and Hilbert Curve Based Searching Strategy, J. Comput. Phys., 384, pp.151~169. https://doi.org/10.1016/j.jcp.2019.01.017
  20. Zhang, J., Hu, S., Yang, Q., Wu, L. (2019) Study on Composite Electromagnetic Scattering Characteristics of Air-floating Corner Reflector and Chaff, 2019 12th Int. Conf. Intell. Comput. Technol. Autom., pp.129~133.
  21. Zhu, G., Man, L., Chen, Y., Yin, H. (2018) Approach of Electromagnetic Modeling for Chaff Clouds Formed by Exploding, 2018 IEEE Int. Conf. Comput. Electromagn., pp.5~7.
  22. Zuo, Y., Guo, L., Liu, W., Ding, J. (2021) Jamming Efficiency Analysis Based on the Range Profile of Target with Chaff, IEEE Access, 9, pp.13573~13589. https://doi.org/10.1109/ACCESS.2021.3052076
  23. Zuo, Y., Li, C., Guo, L., Liu, S. (2019) Evaluation of Efficient Dielectric Constants of Chaff Corridor in Submillimeter Band, 2019 Int. Conf. Microw. Millim Wave Technol., 11(5), pp.6~8.