• Title/Summary/Keyword: Spatial imagery

Search Result 598, Processing Time 0.023 seconds

A Fast Algorithm for Target Detection in High Spatial Resolution Imagery

  • Kim Kwang-Eun
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.7-14
    • /
    • 2006
  • Detection and identification of targets from remotely sensed imagery are of great interest for civilian and military application. This paper presents an algorithm for target detection in high spatial resolution imagery based on the spectral and the dimensional characteristics of the reference target. In this algorithm, the spectral and the dimensional information of the reference target is extracted automatically from the sample image of the reference target. Then in the entire image, the candidate target pixels are extracted based on the spectral characteristics of the reference target. Finally, groups of candidate pixels which form isolated spatial objects of similar size to that of the reference target are extracted as detected targets. The experimental test results showed that even though the algorithm detected spatial objects which has different shape as targets if the spectral and the dimensional characteristics are similar to that of the reference target, it could detect 97.5% of the targets in the image. Using hyperspectral image and utilizing the shape information are expected to increase the performance of the proposed algorithm.

  • PDF

EVALUATION OF SPATIAL SOIL LOSS USING THE LAND USE INFORMATION OF QUICKBIRD SATELLITE IMAGERY

  • Lee, Mi-Seon;Park, Jong-Yoon;Jung, In-Kyun;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.274-277
    • /
    • 2007
  • This study is to estimate the spatial distribution of soil loss using the land use data produced from QuickBird satellite imagery. For a small agricultural watershed (1.16 $km^2$) located in the upstream of Gyeongan-cheon watershed, a precise agricultural land use map were prepared using QuickBird satellite image of April 5 of 2003. RUSLE (Revised Universal Soil Loss Equation) was adopted for soil loss estimation. The data (DEM, soil and land use) for the RUSLE were prepared for 5 m and 30 m spatial resolution. The results were compared with each other and the result of 30 m Landsat land use data.

  • PDF

A Fast Algorithm for Target Detection in High Spatial Resolution Imagery

  • Kim Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.41-47
    • /
    • 2006
  • Detection and identification of targets from remotely sensed imagery are of great interest for civilian and military application. This paper presents an algorithm for target detection in high spatial resolution imagery based on the spectral and the dimensional characteristics of the reference target. In this algorithm, the spectral and the dimensional information of the reference target is extracted automatically from the sample image of the reference target. Then in the entire image, the candidate target pixels are extracted based on the spectral characteristics of the reference target. Finally, groups of candidate pixels which form isolated spatial objects of similar size to that of the reference target are extracted as detected targets. The experimental test results showed that even though the algorithm detected spatial objects which has different shape as targets if the spectral and the dimensional characteristics are similar to that of the reference target, it could detect 97.5% of the targets in the image. Using hyperspectral image and utilizing the shape information are expected to increase the performance of the proposed algorithm.

Spatial Pattern Analysis of High Resolution Satellite Imagery: Level Index Approach using Variogram

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.357-366
    • /
    • 2006
  • A traditional image analysis or classification method using satellite imagery is mostly based on the spectral information. However, the spatial information is more important according as the resolution is higher and spatial patterns are more complex. In this study, we attempted to compare and analyze the variogram properties of actual high resolution imageries mainly in the urban area. Through the several experiments, we have understood that the variogram is various according to a sensor type, spatial resolution, a location, a feature type, time, season and so on and shows the information related to a feature size. With simple modeling, we confirmed that the unique variogram types were shown unlike the classical variogram in case of small subsets. Based on the grasped variogram characteristics, we made a level index map for determining urban complexity or land-use classification. These results will become more and more important and be widely applied to the various fields of high-resolution imagery such as KOMPSAT-2 and KOMPSAT-3 which is scheduled to be launched.

3D Building Model Texture Extraction from Multiple Spatial Imagery for 3D City Modeling (3차원 도시모델 생성을 위한 다중 공간영상 기반 건물 모델 텍스쳐 추출)

  • Oh, Jae-Hong;Shin, Sung-Woong;Park, Jin-Ho;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2007
  • Since large portal service providers started web services for 3D city models around the world using spatial imagery, the competition has been getting intense to provide the models with the higher quality and accuracy. The building models are the most in number among the 3D city model objects, and it takes much time and money to create realistic model due to various shapes and visual appearances of building object. The aforementioned problem is the most significant limitation for the service and the update of the 3D city model of the large area. This study proposed a method of generating realistic 3D building models with quick and economical texture mapping using multiple spatial imagery such as aerial photos or satellite images after reconstructed geometric models of buildings from building layers in digital maps. Based on the experimental results, the suggested method has effectiveness for the generation of the 3D building models using various air-borne imagery and satellite imagery quickly and economically.

Feasibility of Using an Automatic Lens Distortion Correction (ALDC) Camera in a Photogrammetric UAV System

  • Jeong, Hohyun;Ahn, Hoyong;Park, Jinwoo;Kim, Hyungwoo;Kim, Sangseok;Lee, Yangwon;Choi, Chuluong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.475-483
    • /
    • 2015
  • This study examined the feasibility of using an automatic lens distortion correction (ALDC) camera as the payload for a photogrammetric unmanned aerial vehicle (UAV) system. First, lens distortion for the interior orientation (IO) parameters was estimated. Although previous studies have largely ignored decentering distortion, this study revealed that more than 50% of the distortion of the ALDC camera was caused by decentering distortion. Second, we compared the accuracy of bundle adjustment for camera calibration using three image types: raw imagery without the ALDC option; imagery corrected using lens profiles; and imagery with the ALDC option. The results of image triangulation, the digital terrain model (DTM), and the orthoimage using the IO parameters for the ALDC camera were similar to or slightly better than the results using self-calibration. These results confirm that the ALDC camera can be used in a photogrammetric UAV system using only self-calibration.

A Worldview-2 satellite imagery pansharpening algorithm for minimizing the effects of local displacement (지역적 변위에 따른 영향을 최소화하기 위한 Worldview-2 위성영상의 융합 기법)

  • Choi, Jae-Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.577-582
    • /
    • 2011
  • In remote sensing, spatial/spectral distortions are recognized as two of the main problems in the pansharpening algorithm. Most pansharpening methodologies show a tendency to distort spatial information from objects such as buildings and vehicles because there are local spatial dissimilarities among multispectral bands in Worldview-2 satellite imagery. In this paper, we propose a new pansharpening algorithm in order to minimize the effects of the local displacement of spatial information in the pansharpening process. In experiments using Worldview-2 images, our method provided better spectral and spatial quality than pre-existing pansharpening methods.

Development and Application of Overhead Transmission Line Design Program Using High Spatial Resolution Satellite Imagery (고해상도 위성영상을 이용한 송전선로 경과지 설계 프로그램 개발 및 활용)

  • Lee, Hee-Seon;Park, Byoung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.27-29
    • /
    • 2005
  • Overhead transmission line design supporting program using high spatial resolution satellite imagery has been developed recently by Korea Power Engineering Company, The developed program, ITSS(Interactive Tower Spotting System) is purposed to improve the application of satellite imagery with the route selection of overhead transmission line. It is composed of spotting the tower position and designing the tower type and height with DEM(Digital Elevation Model) overlaid with satellite Imagery. To review and confirm the function and work efficiency, ITSS was applied to the pilot project of overhead transmission line design.

  • PDF

A STUDY ON SPATIAL FEATURE EXTRACTION IN THE CLASSIFICATION OF HIGH RESOLUTIION SATELLITE IMAGERY

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.361-364
    • /
    • 2008
  • It is well known that combining spatial and spectral information can improve land use classification from satellite imagery. High spatial resolution classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, extracting the spatial information is one of the most important steps in high resolution satellite image classification. In this paper, we propose a new spatial feature extraction method. The extracted features are integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a Support Vector Machines classifier. In order to evaluate the proposed feature extraction method, we applied our approach to KOMPSAT-2 data and compared the result with the other methods.

  • PDF

Neighborhood Correlation Image Analysis for Change Detection Using Different Spatial Resolution Imagery

  • Im, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.337-350
    • /
    • 2006
  • The characteristics of neighborhood correlation images for change detection were explored at different spatial resolution scales. Bi-temporal QuickBird datasets of Las Vegas, NV were used for the high spatial resolution image analysis, while bi-temporal Landsat $TM/ETM^{+}$ datasets of Suwon, South Korea were used for the mid spatial resolution analysis. The neighborhood correlation images consisting of three variables (correlation, slope, and intercept) were evaluated and compared between the two scales for change detection. The neighborhood correlation images created using the Landsat datasets resulted in somewhat different patterns from those using the QuickBird high spatial resolution imagery due to several reasons such as the impact of mixed pixels. Then, automated binary change detection was also performed using the single and multiple neighborhood correlation image variables for both spatial resolution image scales.