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Neighborhood Correlation Image Analysis for Change
Detection Using Different Spatial Resolution Imagery
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Abstract : The characteristics of neighborhood correlation images for change detection were explored
at different spatial resolution scales. Bi-temporal QuickBird datasets of Las Vegas, NV were used for the
high spatial resolution image analysis, while bitemporal Landsat TM/ETM* datasets of Suwon, South
Korea were used for the mid spatial resolution analysis. The neighborhood correlation images consisting of
three variables (correlation, slope, and intercept) were evaluated and compared between the two scales for

change detection. The neighborhood correlation images created using the Landsat datasets resulted in
somewhat different patterns from those using the QuickBird high spatial resolution imagery due to several

reasons such as the impact of mixed pixels. Then, automated binary change detection was also performed
using the single and multiple neighborhood correlation image variables for both spatial resolution image

scales.

Key Words : change detection; neighborhood correlation images; automated calibration model; spatial

resolution.

1. Introduction

Timely and accurate information on land
cover/land use change is essential for effective and
efficient management of Earth system processes.
Satellite remote sensing has been widely used in land
cover/land use change analysis due to spatial
synchronization and temporal repeat observation over
large geographic regions (Du et al., 2002). There are
two types of land cover/land use change detection
applications: one to detect the location of change
using various change enhancement techniques and

the other to extract the type of change (i.e., “from -
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to” change information) applying classification
techniques (Jensen, 2005).

Numerous remote sensing change detection
techniques and methods have been developed and
evaluated during the past two decades. Traditional
remote sensing change detection techniques include
image algebra such as vegetation index and change
vector analysis (Jensen and Toll, 1982; Michalek et
al., 1993; Chavez and Machinnon, 1994; Johnson and
Kasischke, 1998), image transformation such as
principal component analysis and Chi-square
transformation (Collins and Woodcock, 1996; Ridd

and Liu, 1998), and post-classification comparison
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(Jensen et al., 1987, 1995). Since it is important to
monitor Earth’s surface features for environmental
and ecosystem analysis, new change detection
methods have been constantly proposed. Change
detection methods using sophisticated classification
algorithms such as decision trees and artificial neural
networks (Dai and Khorram 1999; Chan er al., 2001;
Im and Jensen, 2005), using fuzzy sets (Metternicht,
2001), and using object-oriented methods (Walter,
2004; Im et al., 2006b) have been also performed.
Although a variety of change detection methods have
been developed, it should be noted that no single one
is best for all change detection investigations. Detailed
discussion on various change detection techniques is
found in Lu ez al. (2002) and Jensen (2005).

Im and Jensen (2005) introduced the Neighborhood
Correlation Image Analysis concept to detect changes
in an urban residential area using high spatial
resolution remote sensor data. The analysis is based on
the fact that local correlation analysis between bi-
temporal imagery provides unique change information
between two dates. Neighborhood correlation images
(NCISs) contain three variables: correlation, slope, and
intercept calculated from correlation analysis in a
specified neighborhood (e.g., 3 X 3) between bi-
temporal image datasets. Correlation image analysis
was extended to the “object” concept using image
segmentation (Im ez al., 2006b). Since only high
spatial resolution imagery (i.e., ADAR 5500,
QuickBird) was successfully incorporated in the
studies, it is necessary to explore correlation images in
other spatial domains (i.e., mid and/or low spatial
resolution) and to identify their characteristics in terms
of their application to change detection. Thus, bi-
temporal QuickBird datasets in high spatial resolution
domains (i.e., 0.6 X 0.6 m) and bi-temporal Landsat
TM/ETM* datasets in mid spatial resolution domains
(i.e., 30 X 30 m) was used to create neighborhood

correlation images, and the characteristics of the

resultant images were identified and compared. The
objectives of this study included 1) the exploration of
neighborhood correlation images generated with a 3 X
3 window at different spatial resolution scales, 2) the
identification of impact of spatial resolution on using
the neighborhood correlation images for change
detection, and 3) the evaluation of binary change
detection using the variables of the neighborhood

correlation images.

1) Study Area

Two study sites were selected to explore
neighborhood correlation images at different spatial
resolution scales (Fig. 1). One site (Site A) is located
around downtown Las Vegas, NV for the high spatial
resolution scale, exhibiting new buildings and
parking lots developed between iwo dates. The other
site (Site B) is Suwon city in South Korea for the
middle spatial resolution scale, documenting new
urbanized areas including new highways between
two different dates. Suwon city is about 118 km? and
Mt. Guanggyo surrounds the north of Suwon.
Agricultural areas still exist on the southwest of
Suwon. Suwon has developed since the mid-1980s
and its population was up to one million in 2000.
Many changes have occurred between the two dates,
and particularly many non-urban areas such as field

and forest have been urbanized.

2. Methods

1) Remote Sensor Data and Preprocessing

QuickBird imagery from DigitalGlobe Inc.,
obtained on May 10, 2002 and on May 18, 2003 was
used for correlation image analysis of Site A in the
high spatial resolution domain (i.e., 0.6 X 0.6 m).
Landsat imagery obtained on September 12, 1994
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Fig. 1. a), b} Panchromatic bands of bi-temporal QuickBird datasets for Site A obtained on May 10, 2002 and May 18, 2003,
respectively. ¢), d) Near-infrared bands of bi-temporal Landsat TM/ETM" datasets for Site B obtained on September 12, 1994

and September 4, 2000, respectively.

(TM) and on September 4, 2000 (ETM™) was used
for the middle spatial resolution analysis for Site B.
The Characteristics of the QuickBird and Landsat
data are summarized in Table 1. Panchromatic bands
of the QuickBird imagery for Site A and near-infrared
bands of the Landsat imagery are shown in Fig. 1.
Four multispectral bands plus one panchromatic band
of the QuickBird datasets and six multispectral bands
excluding thermal and panchromatic bands of the
Landsat datasets were used in the subsequent
analysis.

Although there was a slight difference in the look
angles between two QuickBird images (Table 1),
orthorectification was not necessary, since no tall
buildings existed and the ground was level within the

site. The bi-temporal Landsat image datasets were

coregistered to a Transverse Mercator (TM) projection
using the Tokyo datum while the bi-temporal
QuickBird image datasets were coregistered to a
Universal Transverse Mercator (UTM) projection in
WGS84 with nearest neighbor resampling.
Rectification errors in both coregistration were less
than 0.5 pixels in RMSE. Although the data acquisition
on near-anniversary dates made seasonal variation
minimal, radiometric correction of the multi-temporal
data was necessary since the correlation image analysis
is based on the direct comparison of the pixel values
between the bi-temporal imagery (Song et al., 2001).
The radiometric normalization method using pseudo
invariant features was applied to the bi-temporal
QuickBird datasets using six pseudo invariant asphalt

and bare soil pixels as radiometric ground control

-339-



Korean Journal of Remote Sensing, Vol.22, No.5, 2006

Table 1. Characteristics of the remotely sensed data for study.

Acquisition Image size Spectral Spatial Radiometric
Study area date Sensor (pixels) bands resolution (m) | resolution (bits) Look angle
May 10, 2002 R 12.87%*
1 kB
SiteA | ygosamr | QKB |0 o ci160 | 4Ms 113.8°/76.1°%
Las Vegas, 0.6x0.6 11 —
NV May 18, 2003 I (pan) 1 Pan 1347
QuickBird o .
18:19 GMT 164.2°/75.2°*
Site B September 12, Landsat
ite 1994 ™ 6MS
Suwon, S 477 X 467 (except 30 %30 8
South Korea eptember 4, Landsat thermal)
2000 ETM*

* Sensor azimuth / Sensor elevation
** Off-nadir view angle

points. However, due to the difficulty of selecting good
radiometric ground control points in the bi-temporal
Landsat datasets, the brightness values of each Landsat
image dataset were converted into reflectance
(Markham and Barker, 1986; NASA, 2006).

2) Reference Data

A total of 400 point samples were randomly
generated within Site A (i.e., Las Vegas, NV) using a
sampling tool developed in ESRI ArcMap 9.1 using
Visual Basic (Im, 2006). The change information for
each sample location was identified through visual
interpretation of the bi-temporal QuickBird datasets
and assigned to one of the following seven classes
(four unchanged and three change classes): asphallt,
built-up, bare land, vegetation, bare land to asphalt,
bare land to built-up, and bare land to vegetation
(Table 2).

In order to collect reference data from the bi-

temporal Landsat datasets, digital topographic maps

with a scale of 1:5,000 and high spatial resolution
imagery of Suwon city provided by Google Earth
were used as ancillary data. Four hundred (400) point
samples were collected within Site B (i.e., Suwon,
South Korea). The change information for each
sample location was assigned to one of the following
six classes (four unchanged and two change classes)
using the ancillary data: water, developed, field,
forest, field to developed, and forest to developed
(Table 2).

3) Correlation Image Analysis

Correlation image analysis is based on spectral
contextual information created using correlation
analysis in a specified neighborhood (or object)
between bi-temporal datasets. The contextual
information consists of three variables: correlation,
slope, and intercept. They contribute to the change
detection by providing unique change information.

The correlation variable represents Pearson’s

Table 2. Reference data information for both study sites.

Reference data (number of pixels)
No change Change Total
Site A asphalt | built-up | bare land | vegetation | bare land to asphalt | bare land to built-up | bare land to vegetation
64 90 77 52 32 65 20 400
Site B water | developed| field forest | field to developed | forest to developed
20 115 80 79 83 23 400
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product-moment correlation coefficient and the slope
and intercept variables are calculated using the least
squares estimates. Ideally, if there is no change in a
certain location between two dates, the location will
have high correlation, a slope around 1, and an
intercept around 0. On the other hand, if change has
occurred, the correlation values fall off to lower
values and the location has variant slope and intercept
values. Detailed explanation with regard to
correlation image analysis is found in Im and Jensen
(2005) and Im et al. (2006b).

Based on correlation analysis, neighborhood
correlation images (NCIs) were generated using the
following spatial analysis, which was implemented as
a dynamic linked library (DLL) in ESRI ArcMap 9.1
using Visual Basic (Im, 2006):

Correlation image =
K K K
NxKxéFDU)Zi—(;PDIi- ;FDZ»
K K K K M
J (NxKx;sz,--(;mf)x(zvxkx;m—(ZlﬁDz,-)z)

i=

Slope image =

K K K
N X Kx;FDwz,-—(;FDL-x;Fm,-)
= = =

X K
N><1<><;nnz,-—(gﬁmi)2
= =

Intercept image =

K K
;Fmi—ﬂx ;FDli
= =

NxK ®

where N is the image containing the number of cells
in the neighborhood, X is the number of bands in one
date of imagery. FD1; and FD2; are the images
generated applying a focal sum function based on the
neighborhood configuration to band i of Date 1 and
Date 2 imagery, respectively. FD1D2; is the image
generated applying a focal sum function based on the
neighborhood configuration to the image generated

by multiplying band i of Date 1 imagery with band i

of Date 2 imagery. FD12; and FD22; are the images
generated applying a focal sum function based on the
neighborhood configuration to the images generated
by mulitiplying band i of Date 1 and Date 2 imagery
by itself, respectively. SI is the Slope image from
Equation 2. Fig. 2 summarizes the data processing
flow diagram of creating neighborhood correlation
images (NCIs). A variety of neighborhood
configurations (i.e., type and size) can be applied to
correlation image analysis. However, only a 3 X3
neighborhood was used to generate the neighborhood

correlation images for both sites.

4) Binary Change Detection

The automated calibration model developed in Im
et al. (2006a) was used for binary change detection
based on the 400 reference data for each site. The
model was based on a threshold-based approach and
the entire burdensome procedure for binary change
detection was automated, including calculation of
accuracy for each threshold(s), two and/or three
dimensional graphs plotting the patterns between the
thresholds and accuracies, determination of optimum
threshold(s) that yield the highest accuracy, binary
change mask generation, and removal of “salt and
pepper” noise. Im et al. (2006a) points out three
advantages of the automated model: 1) the model
uses an exhaustive search technique with a stratified
sampling design of the search space, which
continuously tests threshold(s). 2) Multiple variables
can be applied in the model simultancously, which
may yield higher binary change detection accuracy.
3) The model expedites binary change detection
processes by automating the burdensome procedures,
which saves considerable time and labor. So far,
conventional binary change detection based on a
calibration method has used a single variable and a
threshold due to the computational complexity of

multiple variables and thresholds. In addition, a few
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Fig. 2. Data processing flow diagram of Neighborhood Correlation Images (NCis) generation from

bi-temporal image datasets.

selected thresholds (e.g., 1, 2, and 3 standard
deviations from the mean) have been manually tested
in traditional binary change detection approaches.
The automated model removed such limitations of
traditional binary change detection.

This model requires several inputs, which include
image bands (or polygon layers), threshold
parameters, and reference data. The input variables
(i.e., image bands or polygon layers) can be muitiple.
Each input variable should be one of three types:
linear, ratio, and difference. One end of the values of
a linear variable has a high possibility of change,
whereas the opposite values indicate no change.
Potential change information in a ratio variable is
symmetrical to a slope of 1, while a difference
variable has symmetry to an intercept of 0. The type
determines conditional expression during calibration.
For example, a hypothetical threshold expression of
one ratio typed variable would be “if 0.5 < [variable]
< 2, then assign no change to a pixel, else assign

change to the pixel.” Threshold range and increment

information including start, step, and end needs to be
provided. A point layer is used for reference data and
the layer should contain a binary field representing
change information (i.e., O - no change; 1 - change).
More detailed description on the automated binary
change detection model is found in Im et al. (2006a).

3. Results and Discussion

1) Neighborhood Correlation Images

A 3 X3 window was used to generate neighborhood
correlation images (i.e., correlation, slope, and
intercept) for both test sites. The neighborhood
correlation images are shown in gray scale in Fig. 3.
In the correlation images, the darker pixels (i.e., lower
correlation coefficient values) have a greater
possibility of change. The darker or the brighter a
pixel in the slope and intercept images, the higher the

possibility of change the pixel has. Middle gray
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Fig. 3. Neighborhood correlation images (NCls) generated using a 3x 3 neighborhood for each site.

colors (slope ~ 1 and intercept ~ 0) correspond to
unchanged areas in those two images. Based on
visual inspection, the three variables for each site
provided somewhat unique change information
regardless of spatial resolution.

Fig. 4 depicts three two-dimensional planes based
on the 400 reference data for each site: a plane of
correlation and slope, a plane of slope and intercept,
and a plane of correlation and intercept. Solid
symbols represent no change classes in Fig. 4 while
open symbols stand for change classes. Four
unchanged classes yielded relatively high correlation,
with slope values around 1 and intercept values
around 0 in the high spatial resolution domain for Site
A (Figs. 4a, 4c, 4e). The bare land to asphalt class
resulted in relatively low correlation, lower slope, and
higher intercept for Site A, which made this class easy
to distinguish from the unchanged classes. Some

pixels of the bare land to built-up class (i.e., new

buildings with bright roof tops) yielded high
correlation values. Those pixels can be distinguished
from the unchanged classes due to their lower slope
and higher intercept values (Figs. 4a, 4c, 4e). The
bare land to vegetation class showed slope values
around 1 like the unchanged classes, but it yielded
lower correlation and intercept, which made it easy to
distinguish the class from the unchanged ones (Figs.
4a, 4c, 4e).

The distribution of the three variables in the lower
resolution domain (i.e., Site B) showed somewhat
different patterns (Figs. 4b, 4d, 4f). Three unchanged
classes (i.e., water, field, and forest) resulted in very
high correlation values, which made it
straightforward to differentiate them from the change
classes. However, the developed class had correlation
values ranging from 0.3 to 0.9. Since the developed
class also had a relatively wide range of slope and

intercept values that overlapped with other
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Figs. 4. Two-dimensional planes between the three variables (i.e., correlation, slope, and intercept) using the reference data for each
site.
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unchanged classes, it was hard to distinguish the
developed pixels from the unchanged ones. It is
believed that heterogeneous spectral complexity in
the subpixel level of the mid spatial resolution
domain results in such variable distribution of the
developed class. As many pixels in lower resolution
imagery such as Landsat data generally combine
energy reflected from various materials on the Earth’s
surface, they, particularly in urbanized area, are often
considered as mixed pixels. Some changes in the
subpixel level (e.g., traffic, remodeling of buildings,
new pavement, etc) might exist in the developed class
between the two dates. Even though those small
changes have actually occurred, they can not be
detected in the lower spatial resolution domain such
as in 30 X 30 m Landsat imagery, and such changes
are generally disregarded. Consequently, heterogeneity
in the mixed pixels of developed areas in the lower
spatial resolution domain led to low correlation
coefficients and variant slope and intercept values in
the neighborhood correlation images. The other
unchanged classes such as water, field, and forest,
which were considered as relatively pure pixels,
resulted in very high correlation values. The field
class yielded relatively high slope and low intercept
values. This might be because the field class
contained large crop area, sensitive to the acquisition
date of imagery. The forest class resulted in high
correlation, but a relatively wide range of slope
values, possibly due to the rugged surface of the
mountainous area.

As expected, in the two-dimensional planes of
slope and intercept (Figs. 4c, 4d), the reference data
were distributed along the northwest to southeast
direction, which indicated that higher slope usually
yielded lower intercept, and vice versa. The two
variables were closely interrelated. For example, the
change classes (field to developed, forest to
developed) for Site B yiclded lower slope (< 1) and

higher intercept (> 0).

In summary, many pixels in the site were close to
pure pixels in the high spatial resolution domain.
These pixels resulted in distinguishable change
information in the three neighborhood correlation
variables. Some change pixels (e.g., bare land to
built-up) were confused with the unchanged pixels in
one variable (e.g., correlation), but easily identified as
change with the other two variables (e.g., slope or
intercept). On the other hand, there were relatively
fewer pure pixels in the middle spatial resolution
domain. Almost all the pixels in the developed area
were mixed pixels, which showed a somewhat
different distribution from the other unchanged
classes. Excluding the developed class, the change
pixels for Site A (i.e., high spatial resolution domain)
were more obviously identified in the neighborhood
correlation images than those for Site B (i.c., middle
spatial resolution domain). The number of bands used
(five versus six) and radiometric resolution (11 bits

versus 8 bits) might affect the results.

2) Binary Change Detection

Automated binary change detection was performed
using the neighborhood correlation variables and the
400 reference data containing binary change
information for each site. Two types of variables
were tested: single and multiple. The single variable
approach utilized one of the neighborhood
correlation, neighborhood slope, and neighborhood
intercept for each site. The three variables were used
together as a multiple variable group simultaneously
for each site.

Graphical calibration results using each single
variable for both sites are presented in Fig. 5. Each plot
contains three accuracy statistics: Kappa, user’s
accuracy for change, and producer’s accuracy for
change. The vertical dashed line represents the

optimum threshold resulting in the highest Kappa
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Fig. 5. Automated calibration results using each single variable for both sites. The vertical dotted line represents the optimum

threshold yielding the highest Kappa accuracy.

accuracy. The correlation variable resulted in the
highest Kappa accuracy (0.887) in the calibrations
using the single variables for Site A, followed by the
slope variable (0.854). In the case of the intercept
variable, a high Kappa value of 0.837 was obtained for
Site A (Fig. 5¢). On the contrary, the correlation
variable, interestingly, yielded the lowest Kappa
accuracy (0.723) among three variables for Site B.
Instead, the slope variable resulted in the highest
Kappa accuracy of 0.923. The mixed pixels, especially
in the developed class, accounted for this poor
performance of the correlation variable in the
calibration-based binary change detection in the middle
spatial resolution domain. The calibration results using
each single variable are summarized in Table 3a.
Calibration results using the multiple variables
resulted in better performance than those using the
single variable. Fig. 6 depicts the graphical calibration
results using the multiple variables for both sites. The

multiple variable group for Site A resulted in a Kappa

of 0.982 and the optimum thresholds for the Kappa
were correlation of 0.79, slope of 0.68, and intercept
of 250. Thresholds applied to the multiple variables
are connected with a series of “AND” functions. Thus,
the final threshold-based conditional expression to
produce a binary change mask was “jf [neighborhood
correlation] > 0.79 AND 0.68 < [neighborhood slope]
< 1.47 AND abs ([neighborhood intercept]) < 250,
then assign no change to a pixel, else assign change to
the pixel.” The multiple variable group for Site B
yielded a Kappa of 0.955 with a correlation threshold
of 0.3, a slope threshold of 0.38, and an intercept
threshold of 0.11. The optimum thresholds and Kappa
accuracy with the multiple variables are summarized
in Table 3b.

Fig. 7 shows the binary change detection results
using the multiple variable group with the optimum
thresholds yielding the highest Kappa accuracy for each
site. In order to remove “‘salt-and-pepper” noise in the
outputs, the area thresholds of 300 cells (corresponding
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Automated calibration results using the multiple variables for both sites. The vertical dotted line represents

the optimum thresholds yielding the highest Kappa accuracy. For display purpose, two variables (i.e.,
neighborhood correlation and neighborhood slope) are shown while the other variable (i.e., neighborhood

intercept) remains constant.

Table 3. Optimum thresholds and Kappa coefficients derived from the calibrations using the single and multiple variables for each

study site: a) three single variables and b} multiple variables.

a. Three single variables

Site . Variable Optimum threshold | Kappa accuracy | Conditional expression for no change
Neighborhood correlation (nc) 0.908 0.887 0.908 < [nc] < 1
Site A Neighborhood slope (ns) 0.674 0.854 0.674 < [ns] < 1.484
Neighborhood intercept (ni) 119 0.837 Abs([ni]) < 119
Neighborhood correlation (nc) 0.6 0.723 0.6<[nc]<1
Site B Neighborhood slope (ns) 0.404 0.923 0404 < [ns] <2.475
Neighborhood intercept (ni) 0.08 0.883 Abs([ni]) < 0.08
b. Multiple variables
Site Variables Optimum threshold | Kappa accuracy | Conditional expression for no change
Neighborhood correlation (nc) 0.79 0.79< [nc] <1 AND
Site A Neighborhood slope (nis) 0.68 0.982 0.68 < [ns] < 1.47 AND
Neighborhood intercept (ni) 250 Abs([ni]) <250
Neighborhood correlation (nc) 03 0.3<{nc]<1AND
Site B Neighborhood slope (ns) 0.38 0.955 0.38 < [ns] < 2.63 AND
Neighborhood intercept (ni) 0.11 Abs([ni]) < 0.11

to 108 m2) and 100 cells (corresponding to 90,000 m?)
were applied to the model for Sites A and B,
respectively. Change areas were well detected in both
sites based on visual inspection. There was still some
“salt-and-pepper’”” noise in the binary change detection
result in the high spatial resolution scale (i.e., Site A),

especially along the boundaries of the features such as
houses. Such noise mostly resulted from the different
look angles of the bi-temporal QuickBird datasets. A
larger area threshold (e.g., 500 cells) may be applied to

the model to remove the noise.
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a.Binary change detection result for Site A (QuickBird)
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b.Binary change detection result for Site B (Landsat)

Fig. 7. Binary change detection results using the optimum threshold(s) yielding the highest Kappa accuracy after applying an area
threshold of 300 cells for Site A and the threshold of 50 cells for Site B.

4. Summary and Conclusions

This study explored neighborhood correlation
images (NClIs) at two different spatial resolution
scales. As we expect, the neighborhood correlation
images in the mid spatial resolution scale provided
somewhat different patterns from those in the high
spatial resolution scale. The characteristics of the
neighborhood correlation images in the high
resolution domain (i.e., using the QuickBird datasets)
include: 1) most of the unchanged pixels yielded high
correlation values, but some of the change pixels also
resulted in high correlation. Such change pixels were
in areas changed from bare land to built-up,
particularly those areas with new houses with bright
roof tops. Those pixels generally had lower slope
values than the unchanged pixels. 2) Some errors
were inevitable along the boundaries of the features
within the scene due to the different look angles of
the bi-temporal QuickBird datasets. When using high
spatial resolution data, acquisition time as well as
look angles should be considered in order to

minimize shadow and parallax effect. 3) Most

unchanged pixels had slope values around 1 and
intercept values around O in the neighborhood
correlation images, while change pixels yielded
variant slope and intercept values.

On the other hand, the overall characteristics of the
neighborhood correlation images in the middle
resolution domain include: 1) homogeneous
unchanged areas such as water and forest yielded
very high correlation. However, heterogeneous
developed areas resulted in variant correlation values
ranging from 0.3 to 0.9. This is because the developed
areas contained a lot of mixed pixels. 2) All change
pixels had lower slope and higher intercept values.
The fact that the change areas were all from
vegetation (i.e., field, forest), which produced high
reflectance in the IR region, explained the pattern.

This study also performed binary change detection
using the automated calibration model. The
neighborhood correlation image yielded the highest
Kappa accuracy (0.887) among three variables for the
high spatial resolution domain. However, the
neighborhood correlation image variable resulted in

the lowest accuracy (a Kappa of 0.723) in the case of
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the middle spatial resolution scale due to the variant
correlation values in the developed areas. Instead, the
neighborhood slope variable resulted in a quite good
performance (a Kappa of 0.923) in the binary change
detection. A neighborhood slope variable might be
more critical than a neighborhood correlation variable
for change detection. The muitiple variables produced
the best performance (Kappas of 0.982 and 0.955) in
both scales.

This study used one representative pair of dataset
for different resolution scale. If other datasets with
different features (e.g., number of bands, look angles,
radiometric resolution, spectral regions) are used,
additional characteristics of neighborhood (or object)
correlation images may be identified. Future works
will include application of correlation image analysis
to other environment such as coastal change or

datasets (e.g., hyperspectral, lidar).
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