• Title/Summary/Keyword: Spatial distribution of rainfall

Search Result 206, Processing Time 0.029 seconds

The Distribution of Precipitation in Donghae-Shi (동해시의 강수 분포 특성)

  • 이장렬
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • This study examined the spatial distribution of precipitation in Donghae-Shi. The daily, monthly precipitaion on the 2 stations, 3 AWS(Automatic Weather Station) were analyzed by altitudinal distribution, the air pressure type and days of daily precipitation. The results of the study are as follows. 1 Hour greatest precipitation is 62.4mm(1994. 10. 12), Daily greatest precipitation, 200mm(1994. 10. 12), Monthly greatest precipitation, 355.5mm(1994. 10), Maximum depth of snow fall, 35.5cm(1994. 1. 29) in Donghae-Shi, 1993∼1997. Altitudinal distribution of precipitation in Summer tends to have more precipitation at higher altitude, in Winter, high mountains and coast have more precipitation than other sites do. The heavy rainfall in Donghae-Shi is mainly formed by a Typhoon, next is Jangma front. The number of consecutive days of daily precipitation $\geq$20mm is 81days, 44days of those appeared in Summer season. The synoptic environment causes the difference in observed the heavy snowfall amount between high mountains and coast.

  • PDF

Regional Climate Simulations over East-Asia by using SNURCM and WRF Forced by HadGEM2-AO (HadGEM2-AO를 강제자료로 사용한 SNURCM과 WRF의 동아시아 지역기후 모의)

  • Choi, Suk-Jin;Lee, Dong-Kyou;Oh, Seok-Geun
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.750-760
    • /
    • 2011
  • In this study, the reproducibility of the simulated current climate by using two regional climate models, such as Seoul National University Regional Climate Model (SNURCM) and Weather Resuearch and Forecasting (WRF), is evaluated in advance to produce the standard regional climate scenario of future climate. Within the evaluation framework of a COordinated Regional climate Downscaling EXperiment (CORDEX), 28-year-long (1978-2005) regional climate simulation was conducted by using the Hadley Centre Global Environmental Model (HadGEM2-AO) global simulation data of the National Institute of Meteorological Research (NIMR) as a lateral boundary forcing. The simulated annual surface temperatures were in good agreement with the observation; the spatial correlation coefficients between each model and observation were over 0.98. The cold bias, however, were shown over the northern boundary in the both simulated results. In evaluation of the simulated precipitation, the skill was reasonable and good. The spatial correlation coefficients for the precipitation over the land area were 0.85 and 0.79 in SNURCM and WRF, respectively. It is noted that two regional climate models (RCMs) have different characteristics for the distribution of precipitation over equatorial and midlatitude areas. SNURCM shows better distribution of the simulated precipitation associated with the East Asia summer monsoon in the mid-latitude areas, but WRF shows better in the equatorial areas in comparison to each other. The simulated precipitation is overestimated in summer season (JJA) rather than in spring season (MAM), whereas the spatial distribution of the precipitation in spring season corresponds to the observation better than in summer season. Also the RCMs were capable of reproducing the annual variability of the maximum amount and its timing in July, in which the skills over the inland area were in better agreement with the observation than over the maritime area. The simulated regional climates, however, have the limitation to represent the number of days for extremely hot temperature and heavy rainfall over South Korea.

Estimation of Representative Runoff Ratio from Paddy Field for the Application of EMC Method (EMC 방법적용을 위한 논 대표 유출률 산정)

  • Choi, Dongho;Jung, Jaewoon;Yoon, Kwangsik;Jin, Sohyun;Choi, Wooyoung;Choi, Woojung;Kim, Sangdon;Yim, Byungjin;Choi, Yujin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.943-947
    • /
    • 2010
  • Runoff ratio of paddy fields for the application of Event Mean Concentration (EMC) method was studied. To measure actual runoff ratio of paddy fields, a field monitoring was conducted for 2008 ~ 2009 period. Long-term rainfall data of four cities in major river basins were analyzed and weighting factors were developed to consider temporal and spatial variation of rainfall distribution of Korean peninsula. The observed runoff ratio ranged 0.00 ~ 1.20 and arithmetic mean were 0.25, respectively. However, the representative runoff ratio for paddy fields was determined as 0.41 according to the method suggested by National Institute of Environmental Research (NIER).

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

Landslide Hazard Evaluation using Geospatial Information based on UAV and Infinite Slope Stability Model (UAV 기반의 공간정보와 무한사면해석모형을 활용한 산사태 위험도 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.161-173
    • /
    • 2015
  • The influence of climate change on rainfall patterns has triggered landslide and debris flow with casualties and property damage. This study constructed DSM and Orthophoto by using UAV surveying technique and evaluated landslide risk area by applying GIS data into the infinite slope stability model. As a result of the estimation of slope stability in a site, the slope instability has $SI{\leq}1.0$ with cover area 46,396m2, and the distribution percentage was 18.2%. The most dangerous section has $SI{\leq}0.0$ with its cover area 7,988m2, and the ratio was 0.8%. The reviews regarding the risk of landslide and debris flow risk by stability index and river channel analysis respectively help being able to designate the hazard zone due to heavy rainfall. Therefore the analysis result of this study will need to reinforce soil slope and plan their safety measures in the future.

Assessment for Characteristics and Variations of Upland Drought by Correlation Analysis in Soil Available Water Content with Meteorological Variables and Spatial Distribution during Soybean Cultivation Period (토양유효수분율 공간분포와 기상인자와의 상관관계 분석을 통한 콩 재배기간 밭가뭄 특성 및 변동성 평가)

  • Se-In Lee;Jung-hun Ok;Seung-oh Hur;Bu-yeong Oh;Jeong-woo Son;Seon-ah Hwang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • Climate change has increased extreme weather events likewise heatwaves, heavy rain, and drought. Unlike other natural disaster, drought is a slowly developing phenomenon and thus drought damage increases as the drought continues. Therefore, it is necessary to understand the characteristics and mechanism of drought occurrence. Agricultural drought occurs when the water supply needed by crops becomes insufficient due to lack of soil water. Therefore, soil water is used as a key variable affecting agricultural drought. In this study, we examined the spatio-temporal distribution and trends of drought across the Korean Peninsula by determining the soil available water content (SAWC) through a model that integrated soil, meteorological, and crop data. Moreover, an investigation into the correlation between meteorological variables and the SAWC was conducted to assess how meteorological characteristics influence the nature of drought occurrences. During the soybean cultivation period, the average SAWC was lowest in 2018 at 88.6% and highest in 2021 at 103.2%. Analysis of the spatial distribution of SAWC by growth stage revealed that the lowest SAWC occurred during the flowering stage (S3) in 2018, during the leaf extension stage (S2) in 2019, during the seedling stage (S1) in 2020, again during the flowering stage (S3) in 2021, and during the seedling stage (S1) in 2022. Based on the average SAWC across different growth stages, the frequency of upland drought was the highest at 22 times during the S3 in 2018. The lowest SAWC was primarily influenced by a significant negative correlation with rainfall and evapotranspiration, whereas the highest SAWC showed a significant positive correlation with rainfall and relative humidity, and a significant negative correlation with reference evapotranspiration.

Distribution and Food Source Analysis of Galerucella nipponensis Laboissiere (일본잎벌레 (Galerucella nipponensis Laboissiere)의 분포와 먹이원 분석)

  • Choi, Jong-Yun;Kim, Seong-Ki;Kwon, Yong-Su;Kim, Nam-sin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.334-342
    • /
    • 2016
  • In this study, we explain the environmental variables that mainly influence the spatial and seasonal pattern of Galerucella nipponensis in 38 wetland and stream located at mid-low Nakdong River. G. nipponensis were found at total of 32 wetland, was strongly positively correlated with the biomass of Trapa japonica (t=2.173, $r^2=0.013$, p<0.05). In result of seasonal distribution during 3 years, the largest density of G. nipponensis adult were observed in summer (7~8 months), egg and larva was recorded in only early spring (4~5 months). Rainfall were negatively related with the seasonal distribution of G. nipponensis. They were more abundant in dry season (2015 year) than rainy seasons(2013~2014 year). Stable isotope analysis showed that the G. nipponensis consumed as food source no submerged leaf of T. japonica than other plant. However, utilization of T. japonica on Galerucella nipponensis were not influence to plant biomass and/or species composition in vegetated bed. Those considered as adaptive strategies for sustainable habitat maintenance that because T. japonica use as not only food source but also their lives for G. nipponensis.

The Distribution of Precipitation in Sokcho Area (속초지방의 강수 분포)

  • 이장렬
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.2
    • /
    • pp.117-123
    • /
    • 2000
  • This study examined the spatial distribution of precipitation in Sokcho area. The hourly, daily and monthly precipitation on the 2 stations, 5 AWS in Sokcho area were analyzed by daily, monthly, altitudinal distribution and synoptic environment. The results of the Study are as follows. The amount of Yearly precipitation, 1970~1999 in Sokcho area is gradually increasing. The amount of monthly precipitation 1970~1999 at Sorak weather observation station (altitude 148m), Compared with that in 7 Stations is greatest in spring, Summer and autumn. Because the valleys near Ssangcheon river are funnels for sea wind into Sorak weather observation station. The amount of Summerly precipitation at Mishiryong(1993~1999), the highest altitude in 7 weather observations stations is more 95.2mm than that of Sokcho airport, the lowest altitude, but the amount of winterly precipitation at Sokcho airport is more 89.6mm than that of Mishiryong. When the heavy rainfall and the heavy Snowfall occured in Sokcho area, wind systems were mainly a sea wind (north-north-eastly wind, north-westly wind) and daily mean wind speed was respectively 4.4㎧, 3.6㎧. The amount of the heavy rainfall and heavy snow fall in Sokcho area is closely associated with the north-eastly stream at the lower and the upper level toward the coast of East sea(Sokcho area).

  • PDF

Simulation of anomalous Indian Summer Monsoon of 2002 with a Regional Climate Model

  • Singh, G.P.;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The Indian summer monsoon behaved in an abnormal way in 2002 and as a result there was a large deficiency in precipitation (especially in July) over a large part of the Indian subcontinent. For the study of deficient monsoon of 2002, a recent version of the NCAR regional climate model (RegCM3) has been used to examine the important features of summer monsoon circulations and precipitation during 2002. The main characteristics of wind fields at lower level (850 hPa) and upper level (200 hPa) and precipitation simulated with the RegCM3 over the Indian subcontinent are studied using different cumulus parameterization schemes namely, mass flux schemes, a simplified Kuo-type scheme and Emanuel (EMU) scheme. The monsoon circulation features simulated by RegCM3 are compared with the NCEP/NCAR reanalysis and simulated precipitation is validated against observation from the Global Precipitation Climatology Centre (GPCC). Validation of the wind fields at lower and upper levels shows that the use of Arakawa and Schubert (AS) closure in Grell convection scheme, a Kuo type and Emanuel schemes produces results close to the NCEP/NCAR reanalysis. Similarly, precipitation simulated with RegCM3 over different homogeneous zones of India with the AS closure in Grell is more close to the corresponding observed monthly and seasonal values. RegcM3 simulation also captured the spatial distribution of deficient rainfall in 2002.

  • PDF

Sensitivity of Indian Summer Monsoon Precipitation to Parameterization Schemes

  • Singh, G.P.
    • The Korean Journal of Quaternary Research
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • The Indian summer monsoon behaved an abnormal way in 2002 and as a result there was a large deficiency in precipitation (especially in July) over a large part of the Indian subcontinent. For the study of deficient monsoon of 2002, a recent version of the NCAR regional climate model (RegCM3) has been used to examine the important features of summer monsoon circulations and precipitation during 2002. The main characteristics of wind fields at lower level (850 hPa) and upper level (200 hPa) and precipitation simulated with the RegCM3 over the Indian subcontinent are studied using different cumulus parameterization schemes namely, mass flux schemes, a simplified Kuo-type scheme and Emanuel (EMU) scheme. The monsoon circulation features simulated by RegCM3 are compared with the NCEP/NCAR reanalysis and simulated precipitation is validated against observation from the Global Precipitation Climatology Centre (GPCC). Validation of the wind fields at lower and upper levels show that the use of Arakawa and Schubert (AS) closure in Grell convection scheme, a Kuo type and Emanuel schemes produces results close to the NCEP/NCAR reanalysis. Similarly, precipitation simulated with RegCM3 over different homogeneous zones of India with the AS closure in Grell is more close to the corresponding observed monthly and seasonal values. RegcM3 simulation also captured the spatial distribution of deficient rainfall in 2002.

  • PDF