• Title/Summary/Keyword: Spatial correlation

Search Result 1,572, Processing Time 0.043 seconds

Efficient detectors for MIMO-OFDM systems under spatial correlation antenna arrays

  • Guerra, David William Marques;Fukuda, Rafael Masashi;Kobayashi, Ricardo Tadashi;Abrao, Taufik
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.570-581
    • /
    • 2018
  • This work analyzes the performance of implementable detectors for the multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technique under specific and realistic operation system conditions, including antenna correlation and array configuration. A time-domain channel model was used to evaluate the system performance under realistic communication channel and system scenarios, including different channel correlation, modulation order, and antenna array configurations. Several MIMO-OFDM detectors were analyzed for the purpose of achieving high performance combined with high capacity systems and manageable computational complexity. Numerical Monte Carlo simulations demonstrate the channel selectivity effect, while the impact of the number of antennas, adoption of linear against heuristic-based detection schemes, and the spatial correlation effect under linear and planar antenna arrays are analyzed in the MIMO-OFDM context.

Collective Prediction exploiting Spatio Temporal correlation (CoPeST) for energy efficient wireless sensor networks

  • ARUNRAJA, Muruganantham;MALATHI, Veluchamy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2488-2511
    • /
    • 2015
  • Data redundancy has high impact on Wireless Sensor Network's (WSN) performance and reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can be conserved. Most of the data gathering approaches use either temporal correlation or spatial correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity based sub clustering, where closely correlated sensor nodes are represented by a single representative node. The temporal redundancy is reduced by model based prediction approach, where only a subset of sensor data is transmitted and the rest is predicted. The proposed work reduces substantial amount of energy expensive communication, while maintaining the data within user define error threshold. Being a distributed approach, the proposed work is highly scalable. The work achieves up to 65% data reduction in a periodical data gathering system with an error tolerance of 0.6℃ on collected data.

A Study for Spatial Distribution of Principal Pollutants in Daegu Area Using Air Pollution Monitoring Network Data (도시대기측정망 자료를 이용한 대구지역 대기오염물질의 공간분포에 관한 연구)

  • Ju, Jae-Hee;Hwang, In-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.545-557
    • /
    • 2011
  • The objective of this study was to estimate the trends of each pollutant using the air pollution monitoring networks data from January 2005 to December 2008 in Daegu area. Also, the spatial characteristics of each pollutant were determined using the Pearson correlation coefficients and COD (coefficients of divergence). In this study, the trends of hourly, monthly, seasonal, and total average concentrations of each pollutant for the 10 sites were analyzed. The Ihyeon site showed highest concentration for the $SO_2$, $NO_2$, and PM10}. In the case of $O_3$, the Jisan site showed highest concentration among the other sites. Also, industrial area presented highest concentration for the $SO_2$, CO, and PM10. On the other hand, $NO_2$ showed highest in commercial area. The IDW (inverse distance weighting) method was used to estimate characteristics of spatial distribution. The results provide identify spatial distribution for each pollutant. Also, the Pearson correlation coefficients and COD values provide spatial variability among the monitoring sites. The COD of each pollutant showed very low values for all of the sites pairs. On the other hand, the Pearson correlation coefficients showed high values for all of the sites pairs. Finally, analysis of spatial variability can be used to characterize the spatial uniformity and similarity of concentrations from each pollutant.

An efficient method of spatial cues and compensation method of spectrums on multichannel spatial audio coding (멀티채널 Spatial Audio Coding에서의 효율적인 Spatial Cues 사용과 그에 따른 Spectrum 보상방법)

  • Lee, Byong-Hwa;Beack, Seung-Kwon;Seo, Jeong-Gil;Han, Min-Soo
    • MALSORI
    • /
    • no.53
    • /
    • pp.157-169
    • /
    • 2005
  • This paper proposes an efficiently representing method of spatial cues on multichannel spatial audio coding. The Binaural Cue Coding (BCC) method introduced recently represents multichannel audio signals by means of Inter Channel Level Difference (ICLD) or Source Index (SI). We tried to express more efficiently ICLD and SI information based on Inter Channel Correlation in this paper. We adopt different spatial cues according to ICC and propose a compensation method of empty spectrums created by using SI. We performed a MOS test and measuring spectral distortion. The results show that the proposed method can reduce the bitrate of side information without large degradation of the audio quality.

  • PDF

A Spatial Regularization of LDA for Face Recognition

  • Park, Lae-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.95-100
    • /
    • 2010
  • This paper proposes a new spatial regularization of Fisher linear discriminant analysis (LDA) to reduce the overfitting due to small size sample (SSS) problem in face recognition. Many regularized LDAs have been proposed to alleviate the overfitting by regularizing an estimate of the within-class scatter matrix. Spatial regularization methods have been suggested that make the discriminant vectors spatially smooth, leading to mitigation of the overfitting. As a generalized version of the spatially regularized LDA, the proposed regularized LDA utilizes the non-uniformity of spatial correlation structures in face images in adding a spatial smoothness constraint into an LDA framework. The region-dependent spatial regularization is advantageous for capturing the non-flat spatial correlation structure within face image as well as obtaining a spatially smooth projection of LDA. Experimental results on public face databases such as ORL and CMU PIE show that the proposed regularized LDA performs well especially when the number of training images per individual is quite small, compared with other regularized LDAs.

Adaptive Transmission & Receiving Technology Considering Spatial Channel Correlation in Multiple Antenna Systems (공간 채널 상관도에 따른 다중 안테나 시스템의 적응 송.수신 기법)

  • Park Sung-Ho;Kim Kyoo-Hyun;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.844-855
    • /
    • 2006
  • The communication system using multiple antennas improves link reliability or system capacity using tx & rx diversity, spatial multiplexing, and beamforming technique with services and characteristics of channel environment. This system is sensitive to spatial channel environment. In case of diversity, the lower correlation among links as a LoS environment, the better performance is acquired. In practical channel environment, However, there is high correlation, and there is high performance difference between ideal case and practical case. On the contrary, in case of beamforming, the higher correlation among links, the better performance is acquired. If we use the spatial adaptive transmission technique with spatial channel characteristics, we can get the system that maintains minimum link reliability and guarantees the overall system performance. In this paper, we propose the adaptive transmission and reception technique which use diversity or beamforming technique with channel characteristics.

Analysis of Spatial Modulation MIMO Reception Performance for UHDTV Broadcasting (UHDTV 방송을 위한 공간 변조 다중 안테나 시스템 수신 성능 분석)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.837-847
    • /
    • 2015
  • In this paper, the reception performance of spatial modulation multiple-output multiple-input (MIMO) is analyzed for high speed terrestrial broadcasting. The MIMO scheme is required to reduce the inter symbol interference (ISI) and spatial correlation. The spatial modulation scheme solves the problem of ISI, but the spatial correlation degrades the reception performance of SM scheme. The space-time block coded spatial modulation (STBC-SM) is combined the SM system with space-time block code (STBC) for reducing the effects of the spatial correlation. However, the STBC-SM scheme degrades the spectral efficiency by transmitting same data in the two symbol period. The double space-time transmit diversity with spatial modulation (DSTTD-SM) scheme transmits the data with full antenna combination. To adapt these SM MIMO systems into the terrestrial broadcasting system, the reception performance is analyzed using computer simulation in SUI channel environments.

Performance Evaluation of MIMO System by Spatial Correlation in Reverberation Chamber (잔향챔버내에서 공간 상관도에 의한 MIMO 시스템의 성능평가)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.26-33
    • /
    • 2014
  • The spatial correlation (SC) for a multipath environment based on a $2{\times}2$ MIMO system are computed on the observation planes in the Rayleigh/Rician fading channels inside a mode stirred chamber. The correlation coefficients were obtained and compared for different distances and orthogonal polarization between two transmit antennas. The proposed method is useful for quantifying the potential diversity gain in antenna diversity systems.

Hybrid Diversity-Beamforming Technique for Outage Probability Minimization in Spatially Correlated Channels

  • Kwon, Ho-Joong;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.274-281
    • /
    • 2007
  • In this paper, we present a hybrid multi-antenna technique that can minimize the outage probability by combining the diversity and beamforming techniques. The hybrid technique clusters the transmission antennas into multiple groups and exploit diversity among different groups and beamforming within each group. We analyze the performance of the resulting hybrid technique for an arbitrary correlation among the transmission antennas. Through the performance analysis, we derive a closed-form expression of the outage probability for the hybrid technique. This enables to optimize the antenna grouping for the given spatial correlation. We show through numerical results that the hybrid technique can balance the trade-offs between diversity and beamforming according to the spatial correlation and that the optimally designed hybrid technique yields a much lower outage probability than the diversity or beamforming technique does in partially correlated fading channels.

The Spatial Correlation of Mode Choice Behavior based on Smart Card Transit Data in Seoul (교통카드 자료를 이용한 서울시 지역별 대중교통 수단 선택 공간상관성 분석)

  • Park, Man Sik;Eom, JinKi;Heo, Tae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.623-634
    • /
    • 2013
  • In this study, we provide empirical evidence of whether a spatial correlation among mode choices at the TAZ(Traffic Analysis Zone) level exists based on transit smart card data observed in Seoul, Korea. The results show that the areas with a higher probability that passengers choose to take a bus are clustered and that those regions have fewer metro stations than bus stations. We also found that the spatial correlation turned out to be statistically meaningful and provided an opportunity for the potential use of the spatial correlation in modeling mode choices. A reliable spatial interaction would constitute valuable information for transportation agencies in terms of their route planning and scheduling based on the transit smart card data.