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Abstract 
This paper proposes a new spatial regularization of Fisher linear discriminant analysis (LDA) to reduce the overfitting due to small size 
sample (SSS) problem in face recognition. Many regularized LDAs have been proposed to alleviate the overfitting by regularizing an 
estimate of the within-class scatter matrix. Spatial regularization methods have been suggested that make the discriminant vectors spatially 
smooth, leading to mitigation of the overfitting. As a generalized version of the spatially regularized LDA, the proposed regularized LDA 
utilizes the non-uniformity of spatial correlation structures in face images in adding a spatial smoothness constraint into an LDA framework. 
The region-dependent spatial regularization is advantageous for capturing the non-flat spatial correlation structure within face image as well 
as obtaining a spatially smooth projection of LDA. Experimental results on public face databases such as ORL and CMU PIE show that the 
proposed regularized LDA performs well especially when the number of training images per individual is quite small, compared with other 
regularized LDAs.  
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1. Introduction 
 
Fisher linear discriminant analysis (LDA)[1] is a very 

popular subspace algorithm in face recognition to accomplish 
the tasks of dimensional reduction and feature extraction in 
face recognition[2]. LDA is a supervised learning algorithm 
that maximizes a ratio of the determinant of the between-class 
scatter matrix BS  to the within-class scatter matrix WS  of 

the training samples. Unfortunately, LDA suffers from the so-
called small sample size (SSS) problem[3] that arises when the 
number of training samples is smaller than the dimensionality 
of the sample space, which often happens in face recognition. 

In the case, WS becomes singular, resulting in difficulty in 
calculating discriminant vectors that maximize the Fisher 
criterion. One solution for the singularity is to reduce the 
dimensionality of the original sample space. Several LDA 
algorithms such as Fisherface have been proposed to solve the 
singularity problem[4-6]. The algorithms make the samples in 
the original high dimensional space be mapped into a lower 
dimensional space in which WS  is nonsingular. 

Another direction is to regularize .WS Friedman[7] proposed 

a regularized LDA (R-LDA) that adds some small constant 
values to the diagonal elements of WS . R-LDA makes it 

possible to resolve the singularity and, at the same time to use 
discriminatory information in the null space of WS . Even 
though R-LDA overcomes the singularity of WS , there 

remains another problem of LDA in face recognition. LDA 
algorithms are plagued by the overfitting problem that occurs 
when the number of training images per individual is small, 
which is not unusual in face recognition. For example, given 30 
persons and 3 facial images of 40×40 size for each person, 
LDA algorithms usually find a set of 29 discriminant vectors in 
the 1600-dimensional space. Ninety samples are too small in 
size to determine a total of 46400 (=29×1600) parameters, 
hence overfitting is unavoidable. Since advent of R-LDA, 
several regularized LDA algorithms have been proposed to 
attack the overiftting [8-10]. Their approach is to regularize an 
estimate of WS  that is inaccurate due to a small-sized training 

data set in a such way that it gets less overfitted, insensitive to 
the data set. They have shown good generalization performance 
when the number of training samples is small. 

Some LDA algorithms have also been introduced that take 
advantage of the two-dimensionality or spatial correlations of 
neighboring pixels in face images[11,12]. They are quite 
reasonable because a face image is originally a two-
dimensional data. They benefit from mitigation of the 
overfitting in terms of reduction of the number of parameters. 
The spatially regularized LDA algorithms (S-LDA) make it 
possible to produce the discriminant vectors spatially smooth in 
a matrix form by incorporating a two-dimensional smoothness 
constraint into the Fisher criterion. S-LDA has been reported to 
outperform LDA algorithms such as R-LDA and 2D-LDA[13]. 

In this paper, a new spatial regularization method is 
introduced to alleviate the overfitting in face recognition. The 
proposed regularized LDA, a generalized version of S-LDA, 
utilizes the nonuniformity of spatial correlation structures in 
face images, which has not been considered in previous 
regularization methods. In general, spatial frequency 

Manuscript received Oct. 15. 2009; revised May. 6, 2010; 
Accepted May. 12, 2010. 
This research was supported by Gangnung-Wonju National
University Research Grant of 2008.  



 

 

International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 2, June 2010  

96 

 

 

information in a face image differs from a local region to 
another. Local regions of eyes and nose have more high-
frequency information than other regions such as cheek and 
hair. Therefore, it would be useful to take advantage of the 
nonuniform spatial characteristic of face images in spatially 
regularized LDA algorithms because it enables us to make the 
discriminant vectors capture the non-flat spatial correlation 
structures explicitly. In a nonuniform spatially regularized 
LDA (NS-LDA), a two-dimension smoothness constraint 
whose strength is different from a pixel to another is 
incorporated into a LDA framework. The pixel-by-pixel 
regularization strengths are determined based on the within-
class variation measured from training samples.  

The next Section briefly reviews LDA and regularized LDA. 
In Section 3, a formulation of NS-LDA is presented, along with 
how to determine the nonuniform regularization parameters. 
Experimental results on the face databases are presented in 
Section 4 before drawing conclusions in Section 5. 

 
 

2. A review of LDA and regularized LDA 
 

2.1 LDA 
Given a set of N  d-dimensional samples { }1,..., Nx x  

belonging to C  different classes, with iN  samples in the 
subset iD , 1,..., .i C=  The objective of LDA is to find a 

linear transform Φ  or a set of φ 's that maximizes the ratio 
of the determinant of the between-class scatter matrix to the 
determinant of the within-class scatter matrix. The criterion of 
LDA is given by 

 
φφ

φφ
φ

W
T

B
T

S

S
max , (1) 

where BS  and WS are the between-class and within-class 
scatter matrices, respectively. The optimal linear projection  
Φ  of Eq. (1) is a set of the generalized eigenvectors φ 's of 

BS  and WS , i.e., 

 φλφ WB SS = . (2) 

When WS is nonsingular, Φ  is a set of the eigenvectors of 
BW SS 1− . However, WS  is singular when N  is smaller than 

d . Fisherface[4] has been developed to resolve the singularity, 
followed by D-LDA[6] and N-LDA[5] that have been proposed 
to overcome the weak point of Fisherface. 
 
2.2 Regularized LDA(R-LDA) 

The singularity of LDA due to the SSS problem can be 
resolved by regularization of WS . In [7], a simple regularized 

LDA (R-LDA) has been introduced in which a small value 
( )0>αα  is added to each of the diagonal elements of WS  so 

that Φ  results in a set of eigenvectors of ( ) BW SIS 1−+ α , 

where I  is an identity matrix. The R-LDA resolves the 

singularity because ( )ISW α+  is full rank and thereby uses 
discriminatory information in the null space of .WS  The 
smaller α  is, the more φ  relies on the null space of WS . In 
this way, α  is able to determine an appropriate trade-off 
between the range space and the null space.  

Some regularization methods have been introduced to 
modify or regularize some unreliable eigenvalues for reduction 
of overfitting and better generalization. A two-parameter 
regularized LDA has been proposed to exploit the range and 
null space of WS  by separately regularizing the eigenvalues of 

the two spaces[9]. Jiang et. al. proposed an eigenvalue 
regularization that differently regularizes eigenvalues based on 
an eigenspectrum model to alleviate the problems of instability 
and overfitting[10]. 

 
2.3 Spatially regularized LDA(S-LDA) 

Unlike the eigenvalue regularization methods above, a 
spatial smoothness regularization approach[11,12] aim to 
regularize the eigenvectors of WS  explicitly by using a two-

dimensional (2-D) smoothness constraint. T. Hastie, et. al. 
proposed a penalized version of LDA designed for 
classification problems such as handwritten digit 
recognition[11]. The spatial smoothness regularization based 
on a 2-D smoothing penalty for φ 's has recently been revisited 
and successfully applied in face recognition[12]. The reason 
why S-LDA is effective over other regularized LDAs is that it 
can reduce the number of degree of freedom by utilizing high 
correlation structure in face images. As there exists high spatial 
correlation of neighboring pixels in face images, it is desirable 
in terms of generalization performance that discriminant 
vectors ϕ 's also have high spatial correlation between 
neighboring pixels, i.e., they are 2-D spatially smooth. Given 
unseen samples that are a bit spatially different from training 
samples, projections whose discriminant vectors are spatially 
smooth are more likely to produce small variation of features 
than others with spatially rough ones.  

 
 

3. Nonuniform Spatially Regularized LDA 
 
The proposed spatially regularized LDA takes advantage of 

nonuniform spatial common correlation structures of face 
images. Local regions in face images have different spatial 
correlation structures from each other. For example, regions 
corresponding to eyes, nose, and mouth have short spatial 
correlation, i.e., spatially rough, while other regions such as 
cheek and forehead have relatively long spatial correlation. The 
nonuniform spatial characteristic of face images is incorporated 
in spatially regularizing the discriminant vectors of LDA. The 
region-dependent spatial regularization is more advantageous 
for making a projection capture the spatial characteristic of face 
images than the uniform spatial regularization that relies on 
identical roughness constraints across local regions. The 
nonuniform smoothness penalty is described in detail in the 
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following section. 
 

3.1 Nonuniform smoothness constraint 
The 2-D smoothness constraint adopted is based on the 

discrete Laplacian-based measure[14] that calculates local 
smoothness at each pixel. The Laplacian measure involves the 
derivatives in the horizontal and vertical directions only. For a 
discriminant vector ϕ of ( )n n d× = size, the nonuniform 

smoothness penalty is defined as 

( ) ( )2

( 1, ) ( 1, ) ( , 1) ( , 1) ( , )4
n n

ij i j i j i j i j i j
i j

ϕ γ ϕ ϕ ϕ ϕ ϕ+ − + −Θ = ⋅ + + + −∑∑  (3) 

where ( , )i jϕ  represents a pixel of ϕ on ( ),i j in the n n×  

matrix form and ijγ  is a regularization parameter on the pixel. 

The parameters ijγ 's determine pixel-by-pixel nonuniform 
regularization strengths for the coefficients of ϕ . Eq. (3) is 
expressed in a matrix form for LDA framework as 

 ( )
21

2 T TD D Dϕ ϕ ϕ ϕΘ = Γ = Γ , (4) 

where φ  is a 1×d  vector and D  is a dd ×  matrix given 
by 
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, (5) 

 
where the positive elements of each row correspond to 4 
neighbors at each pixel (2 or 3 neighbors for pixels at 
boundaries), and I is a d d× diagonal matrix, [ ]0 | 1,...,i i dγ > =  that 

consists of the pixel-by-pixel spatial regularization parameters, 
which is the core of nonuniform spatially regularized LDA 
(NS-LDA). Varying the values of diagonal elements of I  
separately makes it possible to apply the strengths of spectral 
regularization differently from a pixel to another. The 
parameters can also control the scale of nonuniformity of 
spatial regularization, thereby ranging from pixel-by-pixel to 
region-by-region regularization. The nonuniform spatial 
regularization of Eq. (4) can be viewed as a generalized version 
of a spectrally regularized LDA in [11,12] in which an uniform 
smoothness constraint is adopted.  

 
3.2 NS-LDA algorithm 

There are several ways to combine two criteria of Eq. (1) and 
Eq. (4). Here, the nonuniform smoothness penalty, ( )min ϕΘ  

is combined with the LDA framework, as in regularization 
methods of [11]. The modified Fisher criterion of NS-LDA is 

defined as 

 max
( )

T
B

T T
W

S

S D Dϕ

ϕ ϕ
ϕ α ϕ+ Γ

, (6) 

where α  is a positive regularization factor that controls the 
overall strength of spatial regularization. The solution of Eq. 
(6) is obtained by solving the following generalized eigenvalue 
problem 

 φαλφ )( DDSS T
WB Γ+= . (7) 

Since DDT Γ  is symmetric and positive definite, the matrix 
DDS T

W Γ+α is also symmetric and positive definite. 

Consequently, DDS T
W Γ+α  is invertible.  

 

3.3 The nonuniform regularization parameters 
This section explains how to determine the nonuniform 

spatial regularization matrix I , which is a key component of 
the NS-LDA algorithm. The underlying principle of the 
selection scheme is that, the larger spatial variation a local 
region or pixel has, the stronger spatial regularization applied is. 
The degree of spatial variation on a pixel is measured from an 
average of within-class variation of the training images. 
Consequently, NS-LDA leads to a regularized LDA that 
imposes strong smoothness regularization to local regions 
where deviation within face images of each person is relatively 
larger. The reason is as follows. The discriminant vectors that 
maximize Fisher criterion, that is, minimize T

WSϕ ϕ , often 

get overfitted to the "difference"' between face images of each 
class while transforming the training samples as close to each 
other in a low dimensional space as possible especially when 
the training samples are not enough. Discriminant vectors with 
higher smoothness on the local regions having large within-
class variation in the training images are very likely to be 
advantageous than those with roughness on the local regions in 
terms of generalization performance. 

Given the mean of within-class standard deviation on each 
pixel is , the nonuniform regularization parameter for each 
pixel iγ  is determined by a linear scaling which is given by 

 ( )max min
min min

max min

, 1,..., ,i s s i d
s s
γ γγ γ−= − + =

−
 (8) 

where iss maxmax = , iss minmin = , and maxγ and minγ are 

control parameters that determine the maximum and minimum 
of the scaled is . In the experiment, maxγ  is set to 1 and 

)10( minmin ≤< γγ is used as a single control parameter for 
controlling the non-flat regularization strength. When minγ is 1, 

NS-LDA becomes a uniformly regularized LDA. The 
procedure of NS-LDA is summarized as follows. 

 
1. Calculate the pixel-by-pixel standard deviation of face 

images of each person in the training data set. 
2. Average the standard deviation over all classes. 
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3. Determine Γ  by using Eq. (8). 
4. Extract discriminant vectors by solving Eq. (7). 

 

4. Experimental Results and Discussions 
 

4.1 Datasets and experiments 
The face data sets are used to evaluate NS-LDA compared 

with other LDA methods. They are all standard publicly 
available databases. The ORL database[15] consists of 10 
images of each of 40 individuals, each face captured in frontal 
position with slight tilt of the head. The CMU PIE database[16] 
consists of 41,368 images of 68 people, each person under 13 
different poses, 43 different illumination conditions, and with 4 
different expressions. Five near-frontal poses (C05, C07, C09, 
C27, C29) under all different illuminations and expressions are 
chosen for evaluation and 170 images for each individual are 
used. The CMU PIE dataset is adopted to assess NS-LDA with 
respect to illumination variation because spatial regularization 
may depend on illumination variation in face images. In all 
experiments, original images are normalized. The eyes are 
detected manually and aligned horizontally by rotation. Then 
the face area is cropped and re-scaled into a size of 32×32, 
with 256 gray levels per pixel. Each cropped face image is 
normalized into the unit length. Fig. 1 shows several sample 
images of the databases after normalization. For comparison 
purpose, LDA-based algorithms such as the Fisherface, R-
LDA[7] and S-LDA[12] were implemented and compared with 
NS-LDA. For simplicity, a nearest neighbor classifier with 
Euclidean distance is used for classification. 

 

 
(a) 

 
(b) 

Fig. 1 Samples of the normalized face images from the two 
databases: (a) ORL database, (b) CMU PIE database.  

 
4.2 Experimental results 

Tables 1-2 show the results of four LDA algorithms on the 
two databases. For each database, the algorithms are evaluated 
with respect to the number of training images per individual. "n 
training samples per individual" in each table means that n 
images per individual are chosen randomly as training samples 
and the others remained are used as test samples. For each case, 
error rates of 50 runs are averaged, each with a training data set 
chosen randomly. The experiments are run by varying values of 
the regularization parameters of each algorithm. Each error rate 
in the tables is the best result of each algorithm. 

Table 1 reveals that NS-LDA outperforms Fisherface, R-
LDA, and S-LDA on the ORL database. The improvement of 
NS-LDA over R-LDA and S-LDA was achieved considerably 

when the number of training images per individual is small, 2 
to 3, which is the worst cases in terms of the SSS problem. This 
implies that NS-LDA is a little more effective in regularizing 
the poor estimates of WS  due to the SSS problem in face 

recognition than the other regularized LDA algorithms. As 
expected, the improvement diminishes as the number of 
training images per individual increases. 
 

Table 1. Error rates(%) of LDA algorithms on the ORL 
database. 

training samples per individual 
Methods 

2 3 4 5 6 7 8 
Fisherface 42.4 21.4 11.5 7.4 5.3 4.0 3.6

R-LDA 20.5 10.8 6.3 3.6 2.6 2.0 1.3
S-LDA 17.0 8.1 4.2 2.3 1.6 1.2 0.8

NS-LDA 16.0 7.4 3.7 1.9 1.4 1.1 0.7
 

Table 2. Error rates(%) of LDA algorithms on the CMU PIE 
database. 

training samples per individual 
Methods 

2 3 4 5 6 7 8 
Fisherface 68.6 50.8 39.4 28.3 24.2 21.7 15.6

R-LDA 51.4 36.8 27.7 18.4 13.6 10.6 5.4
S-LDA 50.7 36.3 27.6 18.1 13.3 10.5 5.2

NS-LDA 49.4 35.0 26.6 17.4 12.9 10.1 5.1
 

 

 

 

 
Fig. 2 Discriminant vectors of Fisherface, R-LDA, S-LDA, and 

NS-LDA (from top to bottom). 
 
The error rates on the CMU PIE database are shown in table 

2. High error rates of all LDA algorithms seem to be caused by 
large illumination variation, as shown in Fig. 1(b). Even though 
some illumination compensation such as Gabor filters can 
enhance recognition rate significantly, the improvement of 
LDA is considered only in this paper. As in the previous 
database, NS-LDA is also more effective than R-LDA and S-
LDA for small sample-sized training data sets. It should be 
noted that the improvement of recognition rates by 1.0%~2.0% 
in case of a small number of training samples per individual 
corresponds to reduction of misclassification of about 110~220 
face images. The results imply that the nonuniform spatial 
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regularization is relatively effective in large variation in 
illumination in face images.  

On the other hand, it is noteworthy to compare spatial 
smoothness of the discriminant vectors of the LDA algorithms. 
Fig. 2 shows top 6 discriminant vectors (from left to right) of 
each LDA algorithm from ORL database where training data 
set with 3 training images per individual was used to construct 
them. It can be observed that the discriminant vectors of 
Fisherface are spatially rough, R-LDA has smoother 
discriminant vectors than those of Fisherface, S-LDA has the 
smoothest ones, and NS-LDA lies between S-LDA and R-LDA 
in terms of the smoothness. The observation corresponds 
exactly to that the average roughness in terms of 2φD of the 

six discriminant vectors of Fisherface, R-LDA, S-LDA, and 
NS-LDA are 9.51, 4.26, 0.06, and 0.17, respectively. It could 
be explained based on the performance results of table 1 that 
pepper-and-salt patterns on the discriminant vectors of 
Fisherface are indicative of the overfitting to local spatial 
features of the training face images, resulting in poor 
generalization performance. The discriminant vectors of R-
LDA are locally smoother than those of Fisherface, which 
contributes to mitigation of the overfitting, accounting for the 
superiority of R-LDA over Fisherface. On the other hand, S-
LDA and NS-LDA have by far smoother discriminant vectors 
than those of Fisherface and R-LDA because a spatial 
smoothness constraint is applied to the discriminant vectors 
directly. No pepper-and-salt patterns are found unlike in 
Fisherface and R-LDA, which means that differences between 
neighboring pixels or local regions are not over-stressed in 
extracting the discriminant vectors. Note that NS-LDA has 
smooth discriminant vectors that are more descriptive of the 
facial contours than those of S-LDA by virtue of the 
nonuniform regularization. For example, the local regions of 
eyes, nose, mouth that are crucial local features in face 
discrimination are discernible, unlike in S-LDA. The spatial 
characteristic of discriminant vectors of NS-LDA is believed to 
be highly related to outperformance of NS-LDA over S-LDA.  
 
 

5. Conclusions 
 

In this paper, a new spatial regularization on LDA has been 
proposed to reduce the overfitting in face recognition. The 
proposed regularized LDA, called Nonuniform Spatial 
Regularized LDA (NS-LDA) incorporates a two-dimensional 
spatial constraint that utilizes the nonuniformity of spatial 
correlation structures in face images into an LDA framework. 
An effective method of determining the nonuniform spatial 
regularization has also been presented. NS-LDA makes the 
discriminant vectors spatially smooth as well as capturing the 
facial contours, leading to better recognition rates especially 
when the number of training images per individual is quite 
small, which is not rare in practical face recognition 
applications. Experimental results on the two distinct face 
databases have shown that NS-LDA is able to achieve better 

performance than LDA algorithms.  
 

References 
 
[1] R. A. Fisher, "The use of multiple measures in taxonmic 

problems," Ann. Eugenics, vol. 7, pp. 179-188, 1936. 
[2]  R. Chellapa, C. Whilson, and S. Sirohey, "Human and 

machine recognition of faces: A survey," Proc. of IEEE, vol 
83, no. 5, pp. 705-740, 1995. 

[3]  K. Fukunga, Introduction to Statistical Pattern Recognition, 
Academic Press, New York, 1991. 

[4] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, 
"Eigenface vs. fisherface: Recognition using class specific 
linear projection," IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 18. no, 7, pp. 711-720, 1997. 

[5] L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu, "A new LDA-
based face recognition system which can solve the small 
sample size problem," Pattern Recognition, vol. 33, no. 10, pp. 
1713-1726, 2000. 

[6] K. Liu, Y. Cheng, J. Yang, H. Yu, and J. Yang, "A direct LDA 
algorithm for high-dimensional data with application to face 
recognition," Pattern Recognition, vol. 34, no. 10, pp. 2067-
2070, 2001. 

[7] J. H. Friedman, "Regularized discriminant analysis," J. of the 
American Statistical Association, vol. 84, no. 405, pp. 165-175, 
1989. 

[8] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulo, " 
Regularization studies of linear discriminant analysis in small 
sample size scenarios with application to face recognition," 
Pattern Recognition Letters, vol. 26, no. 2, pp. 181-191, 2005. 

[9] D.-Q. Dai and P. C. Yuen, "Face recognition by regularized 
discriminant analysis," IEEE Trans. on SMC-PART B, vol. 37, 
no. 4, pp. 1080-1085, 2007. 

[10] X. Jiang, B. Mandal, and A. Kot, "Eigenfeature regularization 
and extraction in face recognition," IEEE Tran. on Pattern 
Analysis and Machine Intelligence, vol. 30, no. 3, pp. 383-394, 
2008. 

[11] T. Hastie, A. Buja, and R. Tibshirani, "Penalized discriminant 
analysis", The Annals of Statisticis, vol. 23, no. 1, pp. 73-102, 
1995. 

[12] D. Cai, X. He, Y. Hu, J. Han, and T. Husang, "Learning a 
spatially smooth subspace for face recognition", Proc. of IEEE 
Conf. on Computer Vision and Pattern Recognition, pp. 1-7, 
2007.  

[13] J. Ye, R. Janardan, and Q. Li, "Two-dimensional Linear 
Discriminant Analysis", Proc. of Neural Information 
Processing Systems, pp. 1569-1576, 2004. 

[14] F. O'Sullivan, "Discretized Laplacian smoothing by Fourier 
methods," J. of the American Statistical Association, vol. 86, 
pp. 634-642, 1991. 

[15] ORL Face Database, AT&T Laboratories Cambridge, 2005. 



 

 

International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 2, June 2010  

100 

 

 

[16] T. Sim, S. Baker, and M. Bsat, "The CMU pose," Proc. of 
Conf. on Automatic Face and Gesture Recognition, pp. 46-51, 
2002.  

 

 

Lae-Jeong Park  received the B.S. degree in 
Electrical Engineering from Seoul National 
University, Seoul, Korea, in 1991, and the 
M.S. and Ph.D. degrees in Electrical 
Engineering from the Korea Advanced 
Institute of Science and Technology, Taejon, 
Korea, in 1993 and 1997, respectively. 

From 1997 to 1999, he was with the Information Technology 
Lab. at LG Corporate Institute of Technology, Seoul, Korea. 
He is currently an associate professor in the Department of 
Electronics Engineering at Gangneung-Wonju National 
University, Gangneung, Korea. His current research interests 
are machine learning, intelligent mobile apps, and wireless 
remote monitoring system. 
 
Phone : +82-33-640-2389 
Fax : +82-33-646-0740 
E-mail : ljpark@gwnu.ac.kr 

 


