• Title/Summary/Keyword: Spatial Error Model

Search Result 436, Processing Time 0.023 seconds

Comparative Analysis of the Causal Relationship between Regions of Fluctuations in the Housing Market (주택시장 변동의 지역간 인과성 비교분석)

  • Kim, Kyong-hoon;Jang, Ho-myun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.518-527
    • /
    • 2016
  • The housing market is changing continuously according to the place and time and these changes have a ripple effect across various fields. On the other hand, the amount of housing that is consumed in the region also acts as a central cause of price movement. Moreover, the cause of variations in the housing market can be separated according to the characteristics of the housing consumer. In addition, the individual characteristics of the consumer varies according to the region. As a result, a study on the regional causal relationship of the housing market is underway. Although significant research has been done on the domestic home sales market, there has been limited research on the housing charter market. Therefore, in this paper, regional causal relationship of the housing market in the Gangnam and Gangbuk area in Seoul and Gyeonggi Province was analyzed using the vector error correction model, and is segmented by housing sale market and housing jeonse market. In addition, housing sale and housing jeonse of Gangam, Ganbuk and Gyeonggi province are defined as analysis variables, and time series data is the monthly material of June 2003 to November 2015. The results of the analysis, in the case of the housing sale market, showed that fluctuations in house prices in Gangnam area have a major influence on the fluctuations in house prices in the surrounding region. Similarly, in the case of the housing jeonse market, it was found that the jeonse price of Gangnam area has a significant impact on the jeonse price of housing in the surrounding area.

A Study on the Development Site of an Open-pit Mine Using Unmanned Aerial Vehicle (무인항공기를 이용한 노천광산 개발지 조사에 관한 연구)

  • Kim, Sung-Bo;Kim, Doo-Pyo;Back, Ki-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.136-142
    • /
    • 2021
  • Open-pit mine development requires continuous management because of topographical changes and there is a risk of accidents if the current status survey is performed directly in the process of calculating the earthwork. In this study, the application of UAV photogrammetry, which can acquire spatial information without direct human access, was applied to open-pit mines development area and analyzed the accuracy, earthwork, and mountain restoration plan to determine its applicability. As a result of accuracy analysis at checkpoint using ortho image and Digital Surface Model(DSM) by UAV photogrammetry, Root Mean Square Error(RMSE) is 0.120 m in horizontal and 0.150 m in vertical coordinates. This satisfied the tolerance range of 1:1,000 digital map. As a result of the comparison of the earthwork, UAV photogrammetry yielded 11.7% more earthwork than the conventional survey method. It is because UAV photogrammetry shows more detailed topography. And result of monitoring mountain restoration showed possible to determine existence of rockfall prevention nets and vegetation. If the terrain changes are monitored by acquiring images periodically, the utility of UAV photogrammetry will be further useful to open-pit mine development.

Enhancing Project Integration and Interoperability of GIS and BIM Based on IFC (IFC 기반 GIS와 BIM 프로젝트 통합관리 및 상호 운용성 강화)

  • Kim, Tae-Hee;Kim, Tae-Hyun;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.89-102
    • /
    • 2024
  • The recent advancements in Smart City and Digital Twin technologies have highlighted the critical role of integrating GIS and BIM in urban planning and construction projects. This integration ensures the consistency and accuracy of information, facilitating smooth information exchange. However, achieving interoperability requires standardization and effective project integration management strategies. This study proposes interoperability solutions for the integration of GIS and BIM for managing various projects. The research involves an in-depth analysis of the IFC schema and data structures based on the latest IFC4 version and proposes methods to ensure the consistency of reference point coordinates and coordinate systems. The study was conducted by setting the EPSG:5186 coordinate system, used by the National Geographic Information Institute's digital topographic map, and applying virtual shift origin coordinates. Through BIMvision, the results of the shape and error check coordinates' movement in the BIM model were reviewed, confirming that the error check coordinates moved consistently with the reference point coordinates. Additionally, it was verified that even when the coordinate system was changed to EPSG:5179 used by Naver Map and road name addresses, or EPSG:5181 used by Kakao Map, the BIM model's shape and coordinates remained consistently unchanged. Notably, by inputting the EPSG code information into the IFC file, the potential for coordinate system interoperability between projects was confirmed. Therefore, this study presents an integrated and systematic management approach for information sharing, automation processes, enhanced collaboration, and sustainable development of GIS and BIM. This is expected to improve compatibility across various software platforms, enhancing information consistency and efficiency across multiple projects.

Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities

  • Kim, Sun-Young;Yi, Seon-Ju;Eum, Young Seob;Choi, Hae-Jin;Shin, Hyesop;Ryou, Hyoung Gon;Kim, Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.12.1-12.8
    • /
    • 2014
  • Objectives Cohort studies of associations between air pollution and health have used exposure prediction approaches to estimate individual-level concentrations. A common prediction method used in Korean cohort studies is ordinary kriging. In this study, performance of ordinary kriging models for long-term particulate matter less than or equal to $10{\mu}m$ in diameter ($PM_{10}$) concentrations in seven major Korean cities was investigated with a focus on spatial prediction ability. Methods We obtained hourly $PM_{10}$ data for 2010 at 226 urban-ambient monitoring sites in South Korea and computed annual average $PM_{10}$ concentrations at each site. Given the annual averages, we developed ordinary kriging prediction models for each of the seven major cities and for the entire country by using an exponential covariance reference model and a maximum likelihood estimation method. For model evaluation, cross-validation was performed and mean square error and R-squared ($R^2$) statistics were computed. Results Mean annual average $PM_{10}$ concentrations in the seven major cities ranged between 45.5 and $66.0{\mu}g/m^3$ (standard deviation=2.40 and $9.51{\mu}g/m^3$, respectively). Cross-validated $R^2$ values in Seoul and Busan were 0.31 and 0.23, respectively, whereas the other five cities had $R^2$ values of zero. The national model produced a higher cross-validated $R^2$ (0.36) than those for the city-specific models. Conclusions In general, the ordinary kriging models performed poorly for the seven major cities and the entire country of South Korea, but the model performance was better in the national model. To improve model performance, future studies should examine different prediction approaches that incorporate $PM_{10}$ source characteristics.

Simulation of dam inflow using a square grid and physically based distributed model (격자 기반의 물리적 분포형 모형을 이용한 댐 유입량 모의)

  • Choi, Yun Seok;Choi, Si Jung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.289-300
    • /
    • 2024
  • The purpose of this study is to evaluate the applicability of the GRM (Grid based rainfall-Runoff Model) to the continuous simulation by simulating the dam inflow. The GRM was previously developed for the simulation of rainfall-runoff events but has recently been improved to enable continuous simulation. The target watersheds are Chungju dam, Andong dam, Yongdam dam, and Sumjingang dam basins, and runoff models were constructed with the spatial resolution of 500 m × 500 m. The simulation period is 21 years (2001 to 2021). The simulation results were evaluated over the 17 year period (2005 to 2021), and were divided into three data periods: total duration, wet season (June to September), and dry season (October to May), and compared with the observed daily inflow of each dam. Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), correlation coefficient (CC), and total volume error (VE) were used to evaluate the fitness of the simulation results. As a result of evaluating the simulated dam inflow, the observed data could be well reproduced in the total duration and wet season, and the dry season also showed good simulation results considering the uncertainty of low-flow data. As a result of the study, it was found that the continuous simulation technique of the GRM model was properly implemented and the model was sufficiently applicable to the simulation of dam inflow in this study.

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

Runoff assessment using radar rainfall and precipitation runoff modeling system model (레이더 강수량과 PRMS 모형을 이용한 유출량 평가)

  • Kim, Tae-Jeong;Kim, Sung-Hoon;Lee, Sung-Ho;Kim, Chang-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.493-505
    • /
    • 2020
  • The rainfall-runoff model has been generally adopted to obtain a consistent runoff sequence with the use of the long-term ground-gauged based precipitation data. The Thiessen polygon is a commonly applied approach for estimating the mean areal rainfall from the ground-gauged precipitation by assigning weight based on the relative areas delineated by a polygon. However, spatial bias is likely to increase due to a sparse network of the rain gauge. This study aims to generate continuous runoff sequences with the mean areal rainfall obtained from radar rainfall estimates through a PRMS rainfall-runoff model. Here, the systematic error of radar rainfall is corrected by applying the G/R Ratio. The results showed that the estimated runoff using the corrected radar rainfall estimates are largely similar and comparable to that of the Thiessen. More importantly, one can expect that the mean areal rainfall obtained from the radar rainfall estimates are more desirable than that of the ground in terms of representing rainfall patterns in space, which in turn leads to significant improvement in the estimation of runoff.

Image Matching for Orthophotos by Using HRNet Model (HRNet 모델을 이용한 항공정사영상간 영상 매칭)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.597-608
    • /
    • 2022
  • Remotely sensed data have been used in various fields, such as disasters, agriculture, urban planning, and the military. Recently, the demand for the multitemporal dataset with the high-spatial-resolution has increased. This manuscript proposed an automatic image matching algorithm using a deep learning technique to utilize a multitemporal remotely sensed dataset. The proposed deep learning model was based on High Resolution Net (HRNet), widely used in image segmentation. In this manuscript, denseblock was added to calculate the correlation map between images effectively and to increase learning efficiency. The training of the proposed model was performed using the multitemporal orthophotos of the National Geographic Information Institute (NGII). In order to evaluate the performance of image matching using a deep learning model, a comparative evaluation was performed. As a result of the experiment, the average horizontal error of the proposed algorithm based on 80% of the image matching rate was 3 pixels. At the same time, that of the Zero Normalized Cross-Correlation (ZNCC) was 25 pixels. In particular, it was confirmed that the proposed method is effective even in mountainous and farmland areas where the image changes according to vegetation growth. Therefore, it is expected that the proposed deep learning algorithm can perform relative image registration and image matching of a multitemporal remote sensed dataset.

Agroclimatology of North Korea for Paddy Rice Cultivation: Preliminary Results from a Simulation Experiment (생육모의에 의한 북한지방 시ㆍ군별 벼 재배기후 예비분석)

  • Yun Jin-Il;Lee Kwang-Hoe
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.2
    • /
    • pp.47-61
    • /
    • 2000
  • Agroclimatic zoning was done for paddy rice culture in North Korea based on a simulation experiment. Daily weather data for the experiment were generated by 3 steps consisting of spatial interpolation based on topoclimatological relationships, zonal summarization of grid cell values, and conversion of monthly climate data to daily weather data. Regression models for monthly climatological temperature estimation were derived from a statistical procedure using monthly averages of 51 standard weather stations in South and North Korea (1981-1994) and their spatial variables such as latitude, altitude, distance from the coast, sloping angle, and aspect-dependent field of view (openness). Selected models (0.4 to 1.6$^{\circ}C$ RMSE) were applied to the generation of monthly temperature surface over the entire North Korean territory on 1 km$\times$l km grid spacing. Monthly precipitation data were prepared by a procedure described in Yun (2000). Solar radiation data for 27 North Korean stations were reproduced by applying a relationship found in South Korea ([Solar Radiation, MJ m$^{-2}$ day$^{-1}$ ] =0.344 + 0.4756 [Extraterrestrial Solar Irradiance) + 0.0299 [Openness toward south, 0 - 255) - 1.307 [Cloud amount, 0 - 10) - 0.01 [Relative humidity, %), $r^2$=0.92, RMSE = 0.95 ). Monthly solar irradiance data of 27 points calculated from the reproduced data set were converted to 1 km$\times$1 km grid data by inverse distance weighted interpolation. The grid cell values of monthly temperature, solar radiation, and precipitation were summed up to represent corresponding county, which will serve as a land unit for the growth simulation. Finally, we randomly generated daily maximum and minimum temperature, solar irradiance and precipitation data for 30 years from the monthly climatic data for each county based on a statistical method suggested by Pickering et a1. (1994). CERES-rice, a rice growth simulation model, was tuned to accommodate agronomic characteristics of major North Korean cultivars based on observed phenological and yield data at two sites in South Korea during 1995~1998. Daily weather data were fed into the model to simulate the crop status at 183 counties in North Korea for 30 years. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to score the suitability of the county for paddy rice culture.

  • PDF