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Introduction

There is an accumulation of cohort study results, mostly from 
North America and Europe, indicating an association between 
long-term exposure to particulate matter (PM) air pollution and 
human health [1-3]. Toxicological results indicate plausible bio-

logical pathways that support the association [4-6]. Cohort 
studies of air pollution, however, have an intrinsic limitation: the 
unavailability of individual-level measurements. To overcome 
that limitation, various exposure prediction approaches have 
been used to predict long-term concentrations of PM air pollu-
tion at cohort residences. 
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Objectives Cohort studies of associations between air pollution and health have used 
exposure prediction approaches to estimate individual-level concentrations. A common 
prediction method used in Korean cohort studies is ordinary kriging. In this study, perfor-
mance of ordinary kriging models for long-term particulate matter less than or equal to 
10 µm in diameter (PM10) concentrations in seven major Korean cities was investigated 
with a focus on spatial prediction ability.
Methods We obtained hourly PM10 data for 2010 at 226 urban-ambient monitoring sites 
in South Korea and computed annual average PM10 concentrations at each site. Given 
the annual averages, we developed ordinary kriging prediction models for each of the 
seven major cities and for the entire country by using an exponential covariance reference 
model and a maximum likelihood estimation method. For model evaluation, cross-vali-
dation was performed and mean square error and R-squared (R2) statistics were com-
puted.
Results Mean annual average PM10 concentrations in the seven major cities ranged be-
tween 45.5 and 66.0 µg/m3 (standard deviation=2.40 and 9.51 µg/m3, respectively). 
Cross-validated R2 values in Seoul and Busan were 0.31 and 0.23, respectively, whereas 
the other five cities had R2 values of zero. The national model produced a higher cross-
validated R2 (0.36) than those for the city-specific models.
Conclusions In general, the ordinary kriging models performed poorly for the seven ma-
jor cities and the entire country of South Korea, but the model performance was better in 
the national model. To improve model performance, future studies should examine dif-
ferent prediction approaches that incorporate PM10 source characteristics.
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The application of improved exposure prediction models can 
reduce measurement errors in individual-level air pollution con-
concentrations and can provide more accurate and precise health 
effect estimates. Early cohort studies used relatively simple pre-
diction approaches such as assigning an average measurement 
from monitors within an administrative area to the people resid-
ing in that area (area-averaging). Other approaches included ap-
plication of a measurement at the closest monitor (nearest-mon-
itor) and an average measurement that was weighted by distanc-
es from neighboring monitors (inverse-distance-weighting) 
[2,7,8]. These relatively simple methods, however, do not suffi-
ciently represent the spatial variability of individual-level air pol-
lution concentrations within an area. The use of such predictions 
may result in biased and/or imprecise effect estimates in health 
analyses. Recently, more sophisticated exposure models that rely 
on statistical approaches to incorporate spatial heterogeneity 
were developed. The two most common statistical modeling ap-
proaches are land use regression and kriging. Land use regression 
uses geographical variables as covariates in a regression frame-
work, whereas kriging models correlation structures in addition 
to a specified mean structure [9-11].

In South Korea, recent cohort studies based on individual-lev-
el outcome data have investigated the association of short- or 
long-term exposure to air pollution with human health. Some of 
these studies used simple approaches such as area-averaging and 
inverse-distance-weighting methods [12-14]. Others adopted 
ordinary kriging to estimate spatially heterogeneous air pollu-
tion concentrations across individuals [15-19]. However, most 
of those studies limited their study areas to single cities. In addi-
tion, few studies included information on model evaluation fo-
cusing on the spatial prediction ability of the exposure models. 
This study aimed to construct and evaluate ordinary kriging 
models of long-term average concentrations of PM less than or 
equal to 10 µm in diameter (PM10) during 2010 in seven major 
cities in, as well as the entire country of, South Korea.

Materials and Methods

From the Korean Ministry of Environment, we obtained 
hourly PM10 concentrations recorded in 2010 at 283 monitor-
ing stations in South Korea. We selected the 2010 data as it in-
cluded a larger number of monitoring sites than in other years. 
In South Korea, there are four types of monitoring networks: 
urban-ambient, near-road, regional-background, and national-
background networks. Each network was established with a dif-
ferent purpose of air pollution sampling for pollution sources. In 
our analyses, we used 226 urban-ambient monitoring network 
sites in order to avoid influences of specific local and regional 

sources, such as traffic and long-range transport from neighbor-
ing countries, on PM10 concentration variability. Geographic 
coordinates for the 226 monitoring stations were obtained from 
the Ministry of Environment. The coordinates were verified by 
comparing them with addresses in Google Maps and in the Air 
Korea database. Corrections were applied when site locations 
were mismatched. For each monitoring site, we computed daily 
averages from hourly PM10 concentrations and then averaged 
the daily averages to obtain an annual average. Daily averages 
were computed for all days in which there were more than 21 
hourly measurements. To compute annual averages, we includ-
ed sites for which there was at least one daily average per month 
for more than 9 months and less than 45 consecutive days of 
missing daily averages. 

Kriging is a geostatistical interpolation method that predicts 
an estimate for an unmeasured location given the characterized 
mean and variance structures [20]. To characterize the mean 
structure, ordinary kriging assumes a constant mean over space, 
whereas universal kriging includes covariates in a regression 
framework to represent local variation. The variance feature that 
represents spatial dependency is assessed by using a variogram, 
which applies the squared differences of measurements against 
distances between sites for pairs of data points. The variogram is 
modeled, given a specified covariance function, by using three 
covariance parameters: range, partial sill, and nugget. The range 
is the distance at which a spatial correlation exists. The partial 
sill and nugget parameters represent spatial and non-spatial vari-
ability, respectively.

Using annual average PM10 concentrations across 226 sites, we 
derived ordinary kriging models for each of the seven major cit-
ies and for the entire country of South Korea. The seven major 
cities were Seoul, Busan, Incheon, Daejeon, Daegu, Gwangju, 
and Ulsan. We used the exponential covariance function and 
maximum likelihood method to estimate mean and covariance 
parameters. We also examined sensitivity to other covariance 
functions and estimation methods. Subsequently, we evaluated 
model performance by using leave-one-out cross-validation for 
city-specific models and 10-fold cross-validation for the national 
model. Leave-one-out cross-validation excludes the PM10 data 
for one site, constructs the model using the data for the remain-
ing sites, predicts the PM10 concentration at the excluded site, 
and repeats the same procedure for each of the remaining sites. 
Ten-fold cross-validation splits all sites into 10 groups and per-
forms the same procedure to leave-one-out cross-validation to 
each group of sites instead of to each site. After obtaining cross-
validated predictions for all sites, mean square error (MSE) and 
R-squared (R2) statistics were computed. The MSE is the aver-
age squared differences between observations and cross-validat-
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ed predictions. The R2 statistic was computed as one minus the 
ratio of MSE to the variance of the observations and was re-
placed by zero when the computed R2 was negative. 

Results

Among 226 urban-ambient monitoring sites in South Korea 
for 2010, 24 sites were located in Seoul (Table 1). There were 
less than 15 sites in Gwangju, Daejeon, Daegu, and Ulsan (6, 7, 
11, and 13, respectively). Median between-monitor distances 
were less than 10 km in Daejeon, Ulsan, Daegu, and Gwangju 
(6.6, 7.5, 8.2, and 8.5 km, respectively); the distance was largest 

in Busan (13.5 km). Monitoring sites were less uniformly dis-
tributed in Gwangju and Daegu than in other cities (Figure 1). 
The 2010 annual average PM10 concentration was highest in 
Incheon (66.0 μg/m3) and lowest in Daejeon (45.5 μg/m3; Ta-
ble 1, Figure 2). The standard deviations of the average annual 
PM10 concentrations were larger in Busan and Daegu (9.51 and 
8.48 μg/m3, respectively), and smaller in Daejeon and Seoul 
(2.40 and 3.33 μg/m3, respectively). Within each city, there was 
a tendency for similar PM10 concentrations to be detected at 
nearby monitors and less similar concentrations to be recorded 
at distant monitors (Figure 1). 

City-specific variograms show little spatial dependency in all 
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Figure 1. Maps of urban-ambient monitoring sites and annual average particulate matter less than or equal to 10 μm in diameter concentrations during 
2010 in seven major cities and the entire country, South Korea.

Table 1. Summary statistics of city area, air pollution monitoring sites, and annual average concentrations for particulate matter less than or equal to 10 μm 
in diameter during 2010 by seven major cities in South Korea

City Area (km2)
Population 

density (n/km2)

Monitoring sites

Distances (km) PM10 annual averages in 2010 (µg/m3)

n Min Median Max Min Median Max Mean SD

Seoul 605 16,865 24 1.82 11.23 26.93 40.76 49.16 54.44 49.13 3.33 
Busan 766 4,625 17 2.96 13.52 39.18 31.29 49.71 67.78 48.84 9.51 
Daegu 884 2,816 11 2.95 8.20 29.60 42.33 49.50 69.49 51.23 8.48 
Incheon 1,027 2,639 15 0.98 11.10 46.23 44.92 55.32 66.00 55.34 5.95 
Gwangju 501 2,860 6 2.46 8.46 12.69 37.82 43.28 55.99 44.89 6.65 
Daejeon 540 2,749 7 2.17 6.55 16.17 38.64 43.90 45.54 43.34 2.40 
Ulsan 1,058 1,054 13 1.52 7.47 21.46 41.29 46.39 54.81 47.61 4.92 
South Korea 100,208 497 226 0.78 174.15 543.28 30.16 51.25 81.49 51.51 8.64

Min, minimum; Max, maximum; SD, standard deviation.

-Q1
Q1-Q2
Q2-Q3
Q3-Q4
Q4-
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cities except Seoul and Busan (Figure 3). Estimated range and 
partial sill parameters were zero or close to zero in five of the cit-
ies (Table 2). The cross-validated R2s were zero and the MSEs 
were generally large in five of the cities (Table 2). Daejeon, with 
the lowest PM10 variability, had a relatively small MSE despite 
having a low R2. In Seoul and Busan, cross-validated R2s were 
0.31 and 0.23, respectively. The national model produced slightly 
higher R2 (0.36) than those in the city-specific models. The re-

sults were not sensitive to the application of different covariance 
functions or the use of different parameter estimation methods. 
Figure 4 indicates that there was good agreement between ob-
served and cross-validation predicted PM10 concentrations 
across the monitoring sites in Seoul, Busan, and the entire coun-
try of South Korea. However, variability in the predicted values 
was smaller than that in the observations, resulting in low R2s.
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Figure 2. Box plots of particulate matter less than or equal to 10 μm in diameter (PM10) annual average concentrations during 2010 across urban-ambient 
monitoring sites for seven major cities and the entire country, South Korea.
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ing 2010 in South Korea.
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Discussion

We fitted city-specific and national ordinary kriging models to 
predict individual-level long-term concentrations of PM10 in 
South Korea. For the seven major cities in this study, the perfor-
mance of the city-specific models was generally poor. The na-
tional model performed better than the city-specific models. 
These findings were consistent with those obtained from sensi-
tivity analyses that used different covariance models and param-
eter estimation methods. 

Many cohort studies into air pollution in South Korea have 
used ordinary kriging to estimate individual-level or fine-scale 

area-level concentrations of air pollution including PM10 [15-
19]. Some of these studies have reported evaluation of ordinary 
kriging models based on the leave-one-out cross-validation ap-
proach [17-19]. Leem et al. [17] and Seo et al. [18] reported 
good agreement between observed and cross-validation pre-
dicted PM10 concentrations in Incheon and the seven major cit-
ies included in our study. Because these studies used temporally- 
and spatially-resolved health outcomes such as preterm birth 
and low birth weight, their ordinary kriging was performed on a 
monthly scale. Large temporal variability relative to spatial vari-
ability in predicted monthly concentrations over space might 
have contributed to good agreements in those studies. The level 
of agreement may decline when the analysis focuses on spatial 
prediction ability after excluding temporal variability. Kim et al. 
[21] in a study of six US metropolitan cities showed that tem-
poral variability in two-week average predictions of PM < 2.5 
microm in diameter (PM2.5) components obtained from spatio-
temporal prediction models was larger than spatial variability 
[21]. When temporal variability was adjusted, cross-validated 
R2s dramatically decreased depending on the city and the PM2.5 
component. In an assessment of annual average PM10 concen-
trations in Ulsan, Son et al. [19] compared MSEs from ordinary 
kriging with those obtained from area-averaging, nearest-moni-
tor, and inverse-distance-weighting methods by using cross-vali-
dation. Although the MSE of the ordinary kriging model was 
smaller than the MSE of the other three approaches, all four 
methods produced large MSEs that were greater than the vari-

Table 2. Estimated covariance parameters and cross-validation statistics 
of ordinary kriging prediction models for particulate matter less than or 
equal to 10 μm in diameter annual averages during 2010 in seven major 
cities and the entire country, South Korea

City

Covariance
parameters

Cross-validation 
statistics

Range (km) Partial sill Nugget MSE R2

Seoul 8.80 9.47 2.19 7.67 0.31 
Busan 13.79 62.62 36.27 69.36 0.23 
Daegu 0.00 0.00 65.33 79.76 0.00
Incheon 0.00 0.00 33.02 37.91 0.00
Gwangju 0.00 0.00 36.84 58.23 0.00
Daejeon 1.47 4.89 0.00 5.86 0.00
Ulsan 0.00 0.00 22.38 26.26 0.00
South Korea 29.46 55.84 28.97 47.72 0.36 

MSE, mean square error.
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Figure 4. Scatter plots of observed and cross-validation predicted annual averages of particulate matter less than or equal to 10 μm in diameter during 
2010 in seven major cities and the entire country, South Korea.
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ance of the data, indicative of poor model performance. In order 
to assess model performance, we computed R2 values (in addi-
tion to MSE) which show the proximity to unity of the relation-
ship between observed and cross-validation predicted values 
relative to the variability in the data. Evaluation of spatial predic-
tion ability in exposure prediction models is crucial for provid-
ing spatially-predictable individual air pollution estimates to fu-
ture cohort studies that will examine the association of air pollu-
tion with critical health endpoints such as event occurrence and 
progression of chronic diseases.

Performance of the ordinary kriging models developed in the 
present study was generally poor, possibly because of our use of 
a simple mean structure. Ordinary kriging assumes a mean that 
is constant over space. However, PM air pollution concentra-
tions are affected by local and/or regional sources, which can re-
sult in fine- and/or regional-scale spatial heterogeneity [6,22]. 
For example, PM10 concentrations at a monitor located next to a 
busy road or a power plant could be markedly high and may be 
clearly different from those at nearby monitors. Previous studies 
of source apportionment for PM air pollution in Daejeon, South 
Korea showed that motor vehicle and combustion/industry 
sources contributed substantially to PM10 concentrations [23, 
24]. Exposure prediction models may not accurately represent 
actual PM10 concentrations over space if the contributing local 
and/or regional sources are not considered in the models. We 
suggest that future studies investigate exposure prediction mod-
els that incorporate geographical variables in land use regression, 
either alone or combined with a spatial correlation structure 
within a universal kriging framework.

In addition to our use of a simple mean structure, the small 
number of monitoring sites and/or the presence of insufficient 
spatial variability could have resulted in the poor model perfor-
mance in this study. In the five cities with R2s equal to zero, the 
numbers of monitoring sites were less than 15 and/or spatial 
variability of PM10 concentrations was relatively small. A simula-
tion study showed that ordinary kriging models produced an in-
crease in MSE when the number of monitoring sites decreased 
from 22 to 12 [25]. We excluded approximately 60 monitoring 
sites from near-road and regional- and national-background net-
works that were established to monitor local or regional sources, 
because ordinary kriging captures spatial variability based only 
on large-scale spatial correlation. Land use regression or univer-
sal kriging approaches would allow inclusion of these monitors, 
as they would incorporate variables related to the PM sources. 
In addition, variability in PM10 concentrations in the seven ma-
jor cities was small with coefficients of variation of 8-19% in the 
cities and 17% in the entire country. Variability could increase if 
monitoring sites from other networks are included.

We found better model performance in the national kriging 
model than in the city-specific models. The better performance 
of the national model further indicates the importance of increas-
ing the number of monitoring sites and the spatial variability in 
air pollution data. For the cities in our study with low numbers of 
monitoring sites, it may be preferable to use predictions from the 
national model rather than those from the city-specific models 
when the association between long-term PM concentrations and 
health outcomes is to be assessed in epidemiological studies.

It is important to develop exposure prediction models that ac-
curately represent spatial variability in air pollution concentra-
tions for the goal of health effect analyses. Recent cohort studies 
developed more sophisticated prediction approaches that incor-
porate geographical and meteorological variables in order to re-
duce measurement errors in exposure estimation and to provide 
valid and precise effect estimates in health analyses [9,26,27]. A 
simulation study reported larger bias in health effect estimates 
of predictions obtained from the nearest-monitor method than 
from ordinary kriging, when there was an underlying spatial 
structure in air pollution concentrations [25]. In a simulation 
study that compared health effect estimates of predicted long-
term PM2.5 concentrations obtained from ordinary kriging to 
those from land use regression, the kriging-derived predictions 
produced an unacceptable level of bias in the health effect esti-
mates [28]. Recent papers described various features of mea-
surement errors in exposure estimates from exposure prediction 
models that can result in bias and uncertainty of health effect es-
timates and development of measurement error-correction 
methodology [29,30]. Given the increase in the number of co-
hort studies focusing on assessing causal associations with air 
pollution in South Korea, it is necessary to develop exposure 
prediction models that will produce scientifically meaningful 
results from epidemiological analyses. 

This study suggests that an ordinary kriging model alone 
would be insufficient for predicting PM10 concentrations that 
represent spatial variation across individuals and for assessing 
long-term associations of PM10 with health endpoints in seven 
major cities, South Korea. Future studies should investigate al-
ternative prediction approaches to better represent individual-
level PM10 concentrations. Such alternative approaches should 
incorporate geographical characteristics related to specific sourc-
es of  PM10.
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