DOI QR코드

DOI QR Code

Runoff assessment using radar rainfall and precipitation runoff modeling system model

레이더 강수량과 PRMS 모형을 이용한 유출량 평가

  • Kim, Tae-Jeong (Research & Development Division, Korea Institute of Hydrological Survey) ;
  • Kim, Sung-Hoon (Research & Development Division, Korea Institute of Hydrological Survey) ;
  • Lee, Sung-Ho (Research & Development Division, Korea Institute of Hydrological Survey) ;
  • Kim, Chang-Sung (Research & Development Division, Korea Institute of Hydrological Survey) ;
  • Kwon, Hyun-Han (Department of Civil & Environmental Engineering, Sejong University)
  • 김태정 (한국수자원조사기술원 연구개발실) ;
  • 김성훈 (한국수자원조사기술원 연구개발실) ;
  • 이성호 (한국수자원조사기술원 연구개발실) ;
  • 김창성 (한국수자원조사기술원 연구개발실) ;
  • 권현한 (세종대학교 공과대학 건설환경공학과)
  • Received : 2020.04.07
  • Accepted : 2020.05.13
  • Published : 2020.07.31

Abstract

The rainfall-runoff model has been generally adopted to obtain a consistent runoff sequence with the use of the long-term ground-gauged based precipitation data. The Thiessen polygon is a commonly applied approach for estimating the mean areal rainfall from the ground-gauged precipitation by assigning weight based on the relative areas delineated by a polygon. However, spatial bias is likely to increase due to a sparse network of the rain gauge. This study aims to generate continuous runoff sequences with the mean areal rainfall obtained from radar rainfall estimates through a PRMS rainfall-runoff model. Here, the systematic error of radar rainfall is corrected by applying the G/R Ratio. The results showed that the estimated runoff using the corrected radar rainfall estimates are largely similar and comparable to that of the Thiessen. More importantly, one can expect that the mean areal rainfall obtained from the radar rainfall estimates are more desirable than that of the ground in terms of representing rainfall patterns in space, which in turn leads to significant improvement in the estimation of runoff.

현재 유역단위 수문해석을 목적으로 장기간 자료 확보가 용이하고 신뢰도가 확보된 지상관측소 강수량 자료를 강우-유출 모형을 활용하여 유출량을 평가하고 있다. 지상관측소 강수량 자료를 이용하여 면적평균 강수량을 산정하는데 있어 일반적으로 지상관측소의 위치 정보를 바탕으로 Thiessen 다각형법을 널리 이용하고 있으나 지상관측소의 공간적 편중으로 인해 면적평균 강수량 산정과정에서 제약이 있다. 본 연구에서는 시공간적으로 연속적인 강수량 관측이 가능한 기상레이더 자료를 이용하여 유역단위 면적평균 강수량을 산정하고 이를 PRMS 모형의 입력 자료로 활용하여 유출량을 평가하였다. 세부적으로 레이더 강수량의 편의 오차를 해결하기 위하여 G/R Ratio 기법을 적용하여 유역별로 레이더 강수량을 보정하였다. 레이더 강수량을 이용한 유출특성은 Thiessen 면적강수량을 이용한 유출의 통계적 특성을 현실적으로 재현하였다. 지상 관측소에 의존하여 생산하는 Thiessen 면적강수량에 비하여 레이더 강수량을 활용하는 것이 유역에 발생하는 강수의 공간적 특성을 효과적으로 반영하는 것으로 사료되며 향후 수문해석에서 정확도를 확보한 유출량을 제시할 것으로 판단된다.

Keywords

References

  1. Beven, K.J., Kirkby, M.J., Schofield, N., and Tagg, A.F. (1984). "Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments." Journal of Hydrology, Vol. 69, No. 1-4, pp. 119-143. https://doi.org/10.1016/0022-1694(84)90159-8
  2. Bicknell, B.R., Imhoff, J.C., Kittle Jr, J.L., Jobes, T.H., and Donigian Jr, A.S. (1997). "Hydrological simulation program-FORTRAN." User's manual for version 11.
  3. Borga, M. (2002). "Accuracy of radar rainfall estimates for streamflow simulation." Journal of Hydrology, Vol. 267, No. 1-2, pp. 26-39. https://doi.org/10.1016/S0022-1694(02)00137-3
  4. Cherkauer, D.S. (2004). "Quantifying ground water recharge at multiple scales using PRMS and GIS." Ground Water, Vol. 42, No. 1, pp. 97-110. https://doi.org/10.1111/j.1745-6584.2004.tb02455.x
  5. Ghafouri-Azar, M., and Bae, D.H. (2019). "Analyzing the variability in low-flow projections under GCM CMIP5 scenarios." Water Resources Management, Vol. 33, No. 15, pp. 5035-5050. https://doi.org/10.1007/s11269-019-02396-4
  6. Han, J.H., Ryu, T.S., Lim, K.J., and Jung, Y.H. (2016). "A review of baseflow analysis techniques of watershed-scale runoff models." Journal of the Korean Society of Agricultural Engineers, Vol. 58, No. 4, pp. 75-83. https://doi.org/10.5389/KSAE.2016.58.4.075
  7. Hasan, M.M., Sharma, A., Mariethoz, G., Johnson, F., and Seed, A. (2016). "Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework." Advances in Water Resources, Vol. 97, pp. 205-218. https://doi.org/10.1016/j.advwatres.2016.09.011
  8. Jung, I.W., and Bae, D.H. (2005). "A study in PRMS applicability for Korean river basin." Journal of Korea Water Resources Association, Vol. 38, No. 9, pp. 20-27.
  9. Kang, N.R., Joo, H.J., Lee, M.J., and Kim, H.S. (2017). "Generation of radar rainfall ensemble using probabilistic approach." Journal of Korea Water Resources Association, Vol. 50, No. 3, pp. 155-167. https://doi.org/10.3741/JKWRA.2017.50.3.155
  10. Kim, B.S., Kim, H.S., and Yang, D.M. (2010). "Comparison of spatial distributions of rainfall derived from rain gages and a radar." Journal of Wetlands, Vol. 12, No. 1, pp. 63-73.
  11. Kim, J.P., and Kim, G.S. (2011). "The impact of climate change on the trends of precipitation effectiveness ratio and runoff data in South Korea." Journal of Korea Water Resources Association, Vol. 44, No. 8, pp. 683-694. https://doi.org/10.3741/JKWRA.2011.44.8.683
  12. Kim, S.H., Nam, W.S., and Bae, D.H. (2019). "An analysis of effects of seasonal weather forecasting on dam reservoir inflow prediction." Journal of Korea Water Resources Association, Vol. 52, No. 7, pp. 451-461. https://doi.org/10.3741/JKWRA.2019.52.7.451
  13. Kim, S.J., Kim, S.J., and Chae, H.S. (2000). "Application of grid-based kinematic wave storm runoff model." Journal of Korea Water Resources Association, Vol. 33, No. S1, pp. 20-27.
  14. Kim, T.J., Kwon, H.H., and Lima, C. (2018). "A Bayesian partial pooling approach to mean field bias correction of weather radar rainfall estimates: Application to Osungsan weather radar in South Korea." Journal of Hydrology, Vol. 565, pp. 14-26. https://doi.org/10.1016/j.jhydrol.2018.07.082
  15. Kim, T.J., Lee, D.R., and Kwon, H.H. (2017). "Assessment of merging weather radar precipitation data and ground precipitation data according to various interpolation method." Journal of Korea Water Resources Association, Vol. 50, No. 12, pp. 849-862. https://doi.org/10.3741/JKWRA.2017.50.12.849
  16. Kim, T.J., So, B.J., Ryou, M.S., and Kwon, H.H. (2016). "Development of dam inflow simulation technique coupled with rainfall simulation and rainfall-runoff model." Journal of Korea Water Resources Association, Vol. 49, No. 4, pp. 315-325. https://doi.org/10.3741/JKWRA.2016.49.4.315
  17. Kwon, H.H., Sivakumar, B., Moon, Y.I., and Kim, B.S. (2011). "Assessment of change in design flood frequency under climate change using a multivariate downscaling model and a precipitation-runoff model." Stochastic Environmental Research and Risk Assessment, Vol. 25, No. 4, pp. 567-581. https://doi.org/10.1007/s00477-010-0422-z
  18. Leavesley, G.H. (1984). "Precipitation-runoff modeling system: User's manual." US Department of the Interior, Vol. 83, No. 4238.
  19. Marshall, J.S., and Palmer, W. Mc K. (1948). "The distribution of raindrops with size." Journal of Meteorology, Vol. 5, pp. 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  20. Na, U.Y., Cho, E.S., Lee, J.W., and Yoo, C.S. (2017). "Mean-field-bias correction of the rainfall forecasts using backward storm tracking." Journal of the Korean Society of Hazard Mitigation, Vol. 17, No. 1, pp. 253-263. https://doi.org/10.9798/KOSHAM.2017.17.1.253
  21. Rui, X.P., Qu, X.K., Yu, X.T., Lei, Q.L., and Fan, Y.L. (2019). "Quantitative rainfall estimation using weather radar based on the improved kalman filter method." Applied Ecology and Environmental Research, Vol. 17, No. 1, pp. 369-381. https://doi.org/10.15666/aeer/1701_369381
  22. Rosenbrock, H. (1960). "An automatic method for finding the greatest or least value of a function." The Computer Journal, Vol. 3, No. 3, pp. 175-184. https://doi.org/10.1093/comjnl/3.3.175
  23. Smith, J.A., Baeck, M.L., Villarini, G., Welty, C., Miller, A.J., and Krajewski, W.F. (2012). "Analyses of a long-term, high-resolution radar rainfall data set for the Baltimore metropolitan region." Water Resources Research, Vol. 48, No. 4.
  24. Yoon, Y.N, Kim, J.H., Yoo, C.S., and Kim, S.D. (2002). "A runoff parameter estimation using spatially distributed rainfall and an analysis of the effect of rainfall errors on runoff computation." Journal of Korea Water Resources Association, Vol. 35, No. 2, pp. 1-12. https://doi.org/10.3741/JKWRA.2002.35.1.001