• Title/Summary/Keyword: Sparse Recovery Algorithm

Search Result 38, Processing Time 0.031 seconds

Reweighted L1-Minimization via Support Detection (Support 검출을 통한 reweighted L1-최소화 알고리즘)

  • Lee, Hyuk;Kwon, Seok-Beop;Shim, Byong-Hyo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.134-140
    • /
    • 2011
  • Recent work in compressed sensing theory shows that $M{\times}N$ independent and identically distributed sensing matrix whose entries are drawn independently from certain probability distributions guarantee exact recovery of a sparse signal with high probability even if $M{\ll}N$. In particular, it is well understood that the $L_1$-minimization algorithm is able to recover sparse signals from incomplete measurements. In this paper, we propose a novel sparse signal reconstruction method that is based on the reweighted $L_1$-minimization via support detection.

Void Less Geo-Routing for Wireless Sensor Networks

  • Joshi, Gyanendra Prasad;Lee, Chae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.433-435
    • /
    • 2007
  • Geographic wireless sensor networks use position information for Greedy routing. Greedy routing works well in dense network where as in sparse network it may fail and require the use of recovery algorithms. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costlier for resource constrained position based wireless sensor type networks. In the present work, we propose a Void Avoidance Algorithm (VAA); a novel idea based on virtual distance upgrading that allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forward packet using greedy routing only without recovery algorithm. In VAA, the stuck node upgrades distance unless it finds next hop node which is closer to the destination than itself. VAA guarantees the packet delivery if there is a topologically valid path exists. NS-2 is used to evaluate the performance and correctness of VAA and compared the performance with GPSR. Simulation results show that our proposed algorithm achieves higher delivery ratio, lower energy consumption and efficient path.

  • PDF

Multiple Candidate Matching Pursuit (다중 후보 매칭 퍼슛)

  • Kwon, Seokbeop;Shim, Byonghyo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.954-963
    • /
    • 2012
  • As a greedy algorithm reconstructing the sparse signal from underdetermined system, orthogonal matching pursuit (OMP) algorithm has received much attention. In this paper, we multiple candidate matching pursuit (MuCaMP), which builds up candidate support set in every iteration and uses the minimum residual at last iteration. Using the restricted isometry property (RIP), we derive the sufficient condition for MuCaMP to recover the sparse signal exactly. The MuCaMP guarantees to reconstruct the K-sparse signal when the sensing matrix satisfies the RIP constant ${\delta}_{N+K}<\frac{\sqrt{N}}{\sqrt{K}+3\sqrt{N}}$. In addition, we show a recovery performance both noiseless and noisy measurements.

Introduction and Performance Analysis of Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery (압축 센싱 신호 복구를 위한 AMP(Approximate Message Passing) 알고리즘 소개 및 성능 분석)

  • Baek, Hyeong-Ho;Kang, Jae-Wook;Kim, Ki-Sun;Lee, Heung-No
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1029-1043
    • /
    • 2013
  • We introduce Approximate Message Passing (AMP) algorithm which is one of the efficient recovery algorithms in Compressive Sensing (CS) area. Recently, AMP algorithm has gained a lot of attention due to its good performance and yet simple structure. This paper provides not only a understanding of the AMP algorithm but its relationship with a classical (Sum-Product) Message Passing (MP) algorithm. Numerical experiments show that the AMP algorithm outperforms the classical MP algorithms in terms of time and phase transition.

Random Partial Haar Wavelet Transformation for Single Instruction Multiple Threads (단일 명령 다중 스레드 병렬 플랫폼을 위한 무작위 부분적 Haar 웨이블릿 변환)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.805-813
    • /
    • 2015
  • Many researchers expect the compressive sensing and sparse recovery problem can overcome the limitation of conventional digital techniques. However, these new approaches require to solve the l1 norm optimization problems when it comes to signal reconstruction. In the signal reconstruction process, the transform computation by multiplication of a random matrix and a vector consumes considerable computing power. To address this issue, parallel processing is applied to the optimization problems. In particular, due to huge size of original signal, it is hard to store the random matrix directly in memory, which makes one need to design a procedural approach in handling the random matrix. This paper presents a new parallel algorithm to calculate random partial Haar wavelet transform based on Single Instruction Multiple Threads (SIMT) platform.

A Study on the ISAR Image Reconstruction Algorithm Using Compressive Sensing Theory under Incomplete RCS Data (데이터 손실이 있는 RCS 데이터에서 압축 센싱 이론을 적용한 ISAR 영상 복원 알고리즘 연구)

  • Bae, Ji-Hoon;Kang, Byung-Soo;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.952-958
    • /
    • 2014
  • In this paper, we propose a parametric sparse recovery algorithm(SRA) applied to a radar signal model, based on the compressive sensing(CS), for the ISAR(Inverse Synthetic Aperture Radar) image reconstruction from an incomplete radar-cross-section(RCS) data and for the estimation of rotation rate of a target. As the SRA, the iteratively-reweighted-least-square(IRLS) is combined with the radar signal model including chirp components with unknown chirp rate in the cross-range direction. In addition, the particle swarm optimization(PSO) technique is considered for searching correct parameters related to the rotation rate. Therefore, the parametric SRA based on the IRLS can reconstruct ISAR image and estimate the rotation rate of a target efficiently, although there exists missing data in observed RCS data samples. The performance of the proposed method in terms of image entropy is also compared with that of the traditional interpolation methods for the incomplete RCS data.

An Improvement Algorithm for the Image Compression Imaging

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.30-41
    • /
    • 2020
  • Lines and textures are natural properties of the surface of natural objects, and their images can be sparsely represented in suitable frames such as wavelets, curvelets and wave atoms. Based on characteristics that the curvelets framework is good at expressing the line feature and wavesat is good at representing texture features, we propose a model for the weighted sparsity constraints of the two frames. Furtherly, a multi-step iterative fast algorithm for solving the model is also proposed based on the split Bergman method. By introducing auxiliary variables and the Bergman distance, the original problem is transformed into an iterative solution of two simple sub-problems, which greatly reduces the computational complexity. Experiments using standard images show that the split-based Bergman iterative algorithm in hybrid domain defeats the traditional Wavelets framework or curvelets framework both in terms of timeliness and recovery accuracy, which demonstrates the validity of the model and algorithm in this paper.

A Compressed Sensing-Based Signal Detection Technique for Generalized Space Shift Keying Systems (일반화된 공간천이변조 시스템에서 압축센싱기술을 이용한 수신신호 복호 알고리즘)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1557-1564
    • /
    • 2014
  • In this paper, we propose a signal detection technique based on the parallel orthogonal matching pursuit (POMP) is proposed for generalized shift space keying (GSSK) systems, which is a modified version of the orthogonal matching pursuit (OMP) that is widely used as a greedy algorithm for sparse signal recovery. The signal recovery problem in the GSSK systems is similar to that in the compressed sensing (CS). In the proposed POMP technique, multiple indexes which have the maximum correlation between the received signal and the channel matrix are selected at the first iteration, while a single index is selected in the OMP algorithm. Finally, the index yielding the minimum residual between the received signal and the M recovered signals is selected as an estimate of the original transmitted signal. POMP with Quantization (POMP-Q) is also proposed, which combines the POMP technique with the signal quantization at each iteration. The proposed POMP technique induces the computational complexity M times, compared with the OMP, but the performance of the signal recovery significantly outperform the conventional OMP algorithm.

Off-grid direction-of-arrival estimation for wideband noncircular sources

  • Xiaoyu Zhang;Haihong Tao;Ziye, Fang;Jian Xie
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.492-504
    • /
    • 2023
  • Researchers have recently shown an increased interest in estimating the direction-of-arrival (DOA) of wideband noncircular sources, but existing studies have been restricted to subspace-based methods. An off-grid sparse recovery-based algorithm is proposed in this paper to improve the accuracy of existing algorithms in low signal-to-noise ratio situations. The covariance and pseudo covariance matrices can be jointly represented subject to block sparsity constraints by taking advantage of the joint sparsity between signal components and bias. Furthermore, the estimation problem is transformed into a single measurement vector problem utilizing the focused operation, resulting in a significant reduction in computational complexity. The proposed algorithm's error threshold and the Cramer-Rao bound for wideband noncircular DOA estimation are deduced in detail. The proposed algorithm's effectiveness and feasibility are demonstrated by simulation results.

Cooperative Bayesian Compressed Spectrum Sensing for Correlated Signals in Cognitive Radio Networks (인지 무선 네트워크에서 상관관계를 갖는 다중 신호를 위한 협력 베이지안 압축 스펙트럼 센싱)

  • Jung, Honggyu;Kim, Kwangyul;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.765-774
    • /
    • 2013
  • In this paper, we present a cooperative compressed spectrum sensing scheme for correlated signals in decentralized wideband cognitive radio networks. Compressed sensing is a signal processing technique that can recover signals which are sampled below the Nyquist rate with high probability, and can solve the necessity of high-speed analog-to-digital converter problem for wideband spectrum sensing. In compressed sensing, one of the main issues is to design recovery algorithms which accurately recover original signals from compressed signals. In this paper, in order to achieve high recovery performance, we consider the multiple measurement vector model which has a sequence of compressed signals, and propose a cooperative sparse Bayesian recovery algorithm which models the temporal correlation of the input signals.