Reweighted L1-Minimization via Support Detection

Support 검출을 통한 reweighted L1-최소화 알고리즘

  • Lee, Hyuk (School of Information and Communication, Korea University) ;
  • Kwon, Seok-Beop (School of Information and Communication, Korea University) ;
  • Shim, Byong-Hyo (School of Information and Communication, Korea University)
  • 이혁 (고려대학교 컴퓨터.전파통신공학과) ;
  • 권석법 (고려대학교 컴퓨터.전파통신공학과) ;
  • 심병효 (고려대학교 컴퓨터.전파통신공학과)
  • Received : 2010.10.06
  • Accepted : 2011.01.31
  • Published : 2011.03.25

Abstract

Recent work in compressed sensing theory shows that $M{\times}N$ independent and identically distributed sensing matrix whose entries are drawn independently from certain probability distributions guarantee exact recovery of a sparse signal with high probability even if $M{\ll}N$. In particular, it is well understood that the $L_1$-minimization algorithm is able to recover sparse signals from incomplete measurements. In this paper, we propose a novel sparse signal reconstruction method that is based on the reweighted $L_1$-minimization via support detection.

압축 센싱 (Compressed Sensing) 기술을 통해 $M{\times}N$ 측정 행렬의 원소들이 특정의 독립적인 확률 분포에서 뽑혀 identically 분포의 성질을 가지고 있을 때 $M{\ll}N$의 경우에도 스파스 (sparse) 신호를 높은 확률로 정확하게 복원할 수 있다. $L_1$-최소화 알고리즘이 불완전한 측정에 대해서도 스파스 (sparse) 신호를 복원할 수 있다는 것은 잘 알려진 사실이다. 본 논문에서는 OMP를 변형시킨 support 검출과 가중치 기법을 이용한 $L_1$-최소화 방법을 통하여 스파스 (sparse) 신호의 복원 성능을 향상시키는 알고리즘을 제안하고자 한다.

Keywords

References

  1. B. K. Natarajan, "Sparse approximate solutions to linear systems," SIAM J. Comput, 24(2), pp. 227-234, 1995. https://doi.org/10.1137/S0097539792240406
  2. E. Candes and T. Tao, "Decoding by linear programming," IEEE Trans. on Information Theory, 51(12), pp. 4203-4215, Dec. 2005. https://doi.org/10.1109/TIT.2005.858979
  3. E. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. on Information Theory, 52(2), pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
  4. E. Candes and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies," IEEE Trans. on Information Theory, 52(12), pp. 5406-5425, Dec. 2006. https://doi.org/10.1109/TIT.2006.885507
  5. K. Lange, "Optimization," Springer Texts in Statistics. Springer-Verlag, New York, 2004.
  6. E. Candes and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Problems, 23(3), pp. 969-985, 2007. https://doi.org/10.1088/0266-5611/23/3/008
  7. D. L. Donoho and P. B. Stark, "Uncertainty prindiples and signal recovery," SIAM J. Appl. Math. 49, no. 3, pp. 906-931, 1989. https://doi.org/10.1137/0149053
  8. D. L. Donoho and B. F. Logan, "Signal recovery and the large sieve," SIAM J. Appl. Math. 52, no. 2, pp. 557-591, 1992.
  9. R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc. Ser. B 58, no. 1, pp. 267-288, 1996.
  10. S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput. 1, pp. 33-61, 1998.
  11. M. S. O''Brien, A. N. Sinclair, and S. M. Kramer, "Recovery of sparse spike time series by 1 norm deconvolution," IEEE Trans. Signal Processing, vol. 42, pp. 3353-3365, 1994. https://doi.org/10.1109/78.340772
  12. E. J. Candes, M. B. Wakin, and S. Boyd, "Enhancing Sparsity by Reweighted L1-minimization," Journal of Fourier Analysis and Applications., 14(5), pp. 877-905, Dec. 2008. https://doi.org/10.1007/s00041-008-9045-x
  13. R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, "A Simple Proof of the Restricted Isometry Property for Random Matrices," 2008.
  14. J. A. Tropp and A. C. Gilbery, "Signal recovery from random measurements via orthogonal matching pursuit," 2006.
  15. D. Needell and R. Vershynin, "Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit," 2007.
  16. D. L. Donoho, Y. Tsaig, and Jean-Luc Starck, "Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit," 2006.
  17. W. Dai and O. Milenkovic, "Subspace Pusuit for Compressive Sensing: Closing the Gap Between Performance and Complexity," 2008.
  18. W. Xu, M. A. Khajehnejad, A. S. Avestimehr, and B. Hassibi, "Breaking through the Thresholds: an Analysis for Iterative Reweighted 1-minimization via the Grassmann Angle Framework,"ICASSP 2010.
  19. A. K. Fletcher, S. Rangan, and V. K. Goyal, "Necessary and Sufficient conditions on Sarsity Pattern recovery," arXiv:0804.1839v1[cs.IT]., Jan. 2009. https://doi.org/10.1109/TIT.2009.2032726
  20. D. Malioutov, M. Cetin, and A. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Process., 53(8), pp. 3010-3022, Aug.2005. https://doi.org/10.1109/TSP.2005.850882
  21. D. Model and M. Zibulevsky, "Signal reconstruction in sensor arrays using sparse representations," IEEE Trans. Signal Process., 86(3), pp. 624-638, Mar. 2006. https://doi.org/10.1016/j.sigpro.2005.05.033
  22. D. Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham, and R. G. Baraniuk, "Distributed compressed sensing," 2005.
  23. E. Candes, M. Rudelson, and T. Tao, "Error correction via linear programming," IEEE Computer Society, 2005.