Browse > Article
http://dx.doi.org/10.5909/JBE.2012.17.6.954

Multiple Candidate Matching Pursuit  

Kwon, Seokbeop (Korea University)
Shim, Byonghyo (Korea University)
Publication Information
Journal of Broadcast Engineering / v.17, no.6, 2012 , pp. 954-963 More about this Journal
Abstract
As a greedy algorithm reconstructing the sparse signal from underdetermined system, orthogonal matching pursuit (OMP) algorithm has received much attention. In this paper, we multiple candidate matching pursuit (MuCaMP), which builds up candidate support set in every iteration and uses the minimum residual at last iteration. Using the restricted isometry property (RIP), we derive the sufficient condition for MuCaMP to recover the sparse signal exactly. The MuCaMP guarantees to reconstruct the K-sparse signal when the sensing matrix satisfies the RIP constant ${\delta}_{N+K}<\frac{\sqrt{N}}{\sqrt{K}+3\sqrt{N}}$. In addition, we show a recovery performance both noiseless and noisy measurements.
Keywords
Compressive sensing (CS); restricted isometry property (RIP); greedy algorithm; orthogonal matching pursuit (OMP);
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. L. Donoho and P. B. Stark, "Uncertainty principles and signal recovery," SIAM Journal on Applied Mathematics, Vol. 49, no. 3, pp. 906-931, 1989   DOI   ScienceOn
2 R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, "A simple proof of the restricted isometry property for random matrices," Constructive Approximation, Vol. 28, no. 3, pp. 253-263, Dec. 2008   DOI
3 E. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. on Information Theory, Vol. 52, no. 2, pp. 489-509, Feb. 2006   DOI   ScienceOn
4 E. Candes and T. Tao, "Decoding by linear programming," IEEE Trans. on Information Theory, Vol. 51, no. 12, pp. 4203-4215, Dec. 2005   DOI   ScienceOn
5 R. Giryes and M. Elad, "RIP-Based Near-Oracle Performance Guarantees for SP, CoSaMP, and IHT," IEEE Trans. on Signal Processing, Vol. PP, no. 99, Nov. 2011
6 J. A. Tropp and A. C. Gilbery, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. on Information Theory, Vol. 53, no. 12, pp. 4655-4666, Dec. 2007   DOI   ScienceOn
7 D. Needell and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Applied and Computational Harmonic Analysis, Vol. 26, no. 3, pp. 301-321, Mar. 2009   DOI   ScienceOn
8 W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Trans. on Information Theory, Vol. 55, no. 5, pp. 2230-2249, May. 2009   DOI   ScienceOn
9 D. Needell and R. Vershynin, "Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit," IEEE J. Sel. Topics Signal Processing, Vol. 4, no. 2, pp. 310-316, Apr. 2010   DOI   ScienceOn
10 D. L. Donoho and I. Drori and Y. Tsaig and J. L. Starck,, "Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit," Mar. 2006
11 M. A. Davenport and M. B. Wakin, "Analysis of Orthogonal Matching Pursuit using the restricted isometry property," IEEE Trans. on Information Theory, Vol. 56, no. 9, pp. 4395-4401, Sep. 2010   DOI   ScienceOn
12 E. J. Candes, "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathematique, Vol. 346, no. 9-10, pp. 589-592, May. 2008   DOI   ScienceOn
13 J. A. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. on Information Theory, Vol. 50, no. 10, pp. 2231-2242, Oct. 2004   DOI   ScienceOn