• 제목/요약/키워드: Sparse Matrix Multiplication

검색결과 14건 처리시간 0.032초

GPU-Based ECC Decode Unit for Efficient Massive Data Reception Acceleration

  • Kwon, Jisu;Seok, Moon Gi;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1359-1371
    • /
    • 2020
  • In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.

GPU 기반 임베디드 시스템에서 대용량 데이터의 안정적 수신을 위한 ECC 연산의 가속화 (Acceleration of ECC Computation for Robust Massive Data Reception under GPU-based Embedded Systems)

  • 권지수;박대진
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.956-962
    • /
    • 2020
  • 최근 임베디드 시스템에서 사용되는 데이터의 크기가 증가함에 따라, 대용량의 데이터를 안전하게 수신하기 위한 ECC (Error Correction Code) 복호화 연산의 필요성이 강조되고 있다. 본 논문에서는 GPU가 내장된 임베디드 시스템에서 해밍 코드를 사용하여 ECC 복호화를 할 때, 신드롬 벡터를 계산하는 연산의 수행을 가속할 방법을 제안한다. 제안하는 가속화 방법은, 복호화 연산의 행렬-벡터 곱셈이 희소 행렬을 나타내는 자료 구조 중 하나인 CSR (Compressed Sparse Row) 형식을 사용하고, GPU의 CUDA 커널에서 병렬적으로 수행되도록 한다. 본 논문에서는 GPU가 내장된 실제 임베디드 보드를 사용하여 제안하는 방법을 검증하였고, 결과는 GPU 기반으로 가속된 ECC 복호화 연산이 CPU만을 사용한 경우에 비하여 수행 시간이 감소하는 것을 보여준다.

회로 최적화를 위한 효율적인 희소 행렬 간 곱셈 연산에 관한 연구 (Efficient Sparse Matrix-Matrix Multiplication for circuit optimization)

  • 임은진;김경훈
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(하)
    • /
    • pp.994-997
    • /
    • 2003
  • 행렬 연산은 계산 과학을 사용하는 공학 물리, 화학, 생명 과학, 경제학 등에서 다양하게 사용되고 있으며 이 행렬은 크기가 크고 대부분의 원소가 0 값을 갖는 희소 행렬일 경우가 많다. 본 논문에서는 희소 행렬의 연산 중, 회로 설계 시 최적화 과정에 사용되는 연산에서 문제가 되는 희소 행렬 A 와 블록 대각 행렬 H에 대하여 AH$A^{T}$ 의 연산을 효율적으로 행하는 방법들을 검토하고 메모리 접근 횟수를 모델링하여 수행 속도와 메모리 사용량 면에서 비교한다.

  • PDF

A Study on Circular Filtering in Orthogonal Transform Domain

  • Song, Bong-Seop;Lee, Sang-Uk
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.125-133
    • /
    • 1996
  • In this paper, we dicuss on the properties related to the circular filtering in orthogonal transform domain. The efficient filtering schemes in six orthogonal transform domains are presented by generalizing the convolution-multiplication property of the DFT. In brief, the circular filtering can be accomplished by multiplying the transform domain filtering matrix W, which is shown to be very sparse, yielding the computational gains compared with the time domain processing. As an application, decimation and interpolation techniques in orthogonal transform domains are also investigated.

  • PDF

랜덤워크 기법을 위한 GPU 기반 희소행렬 벡터 곱셈 방안에 대한 성능 평가 (GPU-based Sparse Matrix-Vector Multiplication Schemes for Random Walk with Restart: A Performance Study)

  • 유재서;배홍균;강석원;유용승;박영준;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.96-97
    • /
    • 2020
  • 랜덤워크 기반 노드 랭킹 방식 중 하나인 RWR(Random Walk with Restart) 기법은 희소행렬 벡터 곱셈 연산과 벡터 간의 합 연산을 반복적으로 수행하며, RWR 의 수행 시간은 희소행렬 벡터 곱셈 연산 방법에 큰 영향을 받는다. 본 논문에서는 CSR5(Compressed Sparse Row 5) 기반 희소행렬 벡터 곱셈 방식과 CSR-vector 기반 희소행렬 곱셈 방식을 채택한 GPU 기반 RWR 기법 간의 비교 실험을 수행한다. 실험을 통해 데이터 셋의 특징에 따른 RWR 의 성능 차이를 분석하고, 적합한 희소행렬 벡터 곱셈 방안 선택에 관한 가이드라인을 제안한다.

단일 명령 다중 스레드 병렬 플랫폼을 위한 무작위 부분적 Haar 웨이블릿 변환 (Random Partial Haar Wavelet Transformation for Single Instruction Multiple Threads)

  • 박태정
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권5호
    • /
    • pp.805-813
    • /
    • 2015
  • Compressive sensing 및 희소 복원 문제(sparse recovery problem)는 기존 디지털 기술의 한계를 극복할 수 있는 새로운 이론으로 많은 관심을 받고 있다. 그러나 신호 재구성에서 l1 norm 최적화 문제 해결에 많은 연산이 수행되며 따라서 병렬 처리 기법이 필요하다. 이 과정에서 무작위 행렬과 벡터 연산을 통한 변환 연산이 전체 과정 중에서 많은 부분을 차지하는데, 특히 원본 신호의 크기로 인해 이 과정에서 필요한 무작위 행렬을 메모리에 저장하기 곤란하며 계산 시 무작위 행렬의 절차적(procedural) 처리 방식이 필수적이다. 본 논문에서는 이 문제에 대한 해결책으로 단일 명령 다중 스레드(SIMT) 병렬 플랫폼 상에서 무작위 부분적 Haar 웨이블릿 변환을 절차적으로 계산할 수 있는 새로운 병렬 알고리듬을 제안한다.

삼중 행렬 곱셈의 효율적 연산 (An Efficient Computation of Matrix Triple Products)

  • 임은진
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.141-149
    • /
    • 2006
  • 본 논문에서는 회로 설계 소프트웨어에서 사용되는 primal-dual 최적화 문제의 해를 구하기 위해 필요한 삼중 행렬 곱셈 연산 ($P=AHA^{t}$)의 성능 개선에 관하여 연구하였다. 이를 위하여 삼중 행렬 곱셈 연산의 속도를 개선하기 위하여 기존의 2단계 연산 방법을 대신하여 1단계 연산 방법을 제안하고 성능을 분석하였다. 제안된 방법은 희소 행렬 H의 블록 대각 구조의 특성을 이용하여 부동 소숫점 연산량을 감소시킴으로써 성능 개선을 이루었으며 더불어 메모리 사용량도 기존 방법에 비하여 50% 이하로 감소하였다. 그 결과 Intel Itanium II 플랫폼에서 기존 2단계 연산 방법과 비교하여 속도 면에서 주어진 실험 데이터 집합에 대하여 평균 2.04 의 speedup을 얻었다. 또한 본 논문에서는 플랫폼의 메모리 지연량과 예측된 캐쉬 미스율을 이용한 성능 모델링을 통하여 이와 같은 성능 개선 수치의 가능 범위를 보이고 실측된 성능개선을 평가하였다. 이와 같은 연구는 희소 행렬의 성능 개선 연구를 기본 연산이 아닌 복합 연산에 적용하는 연구로써 큰 의미가 있다.

  • PDF

Fast Binary Block Inverse Jacket Transform

  • Lee Moon-Ho;Zhang Xiao-Dong;Pokhrel Subash Shree;Choe Chang-Hui;Hwang Gi-Yean
    • Journal of electromagnetic engineering and science
    • /
    • 제6권4호
    • /
    • pp.244-252
    • /
    • 2006
  • A block Jacket transform and. its block inverse Jacket transformn have recently been reported in the paper 'Fast block inverse Jacket transform'. But the multiplication of the block Jacket transform and the corresponding block inverse Jacket transform is not equal to the identity transform, which does not conform to the mathematical rule. In this paper, new binary block Jacket transforms and the corresponding binary block inverse Jacket transforms of orders $N=2^k,\;3^k\;and\;5^k$ for integer values k are proposed and the mathematical proofs are also presented. With the aid of the Kronecker product of the lower order Jacket matrix and the identity matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse, fast algorithm and prime based $P^k$ order of proposed binary block inverse Jacket transform, it can be applied in communications such as space time block code design, signal processing, LDPC coding and information theory. Application of circular permutation matrix(CPM) binary low density quasi block Jacket matrix is also introduced in this paper which is useful in coding theory.

희소 행렬 곱셈을 효율적으로 수행하기 위한 유동적 시스톨릭 어레이 구조 설계 (Design of the Adaptive Systolic Array Architecture for Efficient Sparse Matrix Multiplication)

  • 서주원;공준호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.24-26
    • /
    • 2022
  • 시스톨릭 어레이는 DNN training 등 인공지능 연산의 대부분을 차지하는 행렬 곱셈을 수행하기 위한 하드웨어 구조로 많이 사용되지만, sparsity 가 높은 행렬을 연산할 때 불필요한 동작으로 인해 효율성이 크게 떨어진다. 본 논문에서 제안된 유동적 시스톨릭 어레이는 matrix condensing, weight switching, 그리고 direct output path 의 방법과 구조를 통해 sparsity 가 높은 행렬 곱셈의 수행 사이클을 줄일 수 있다. 시뮬레이션을 통해 기존 시스톨릭 어레이와 유동적 시스톨릭 어레이의 성능을 비교하였으며 8×8, 16×16, 32×32 의 크기를 가진 행렬을 동일 크기의 시스톨릭 어레이로 연산하였을 때 필요 사이클 수를 최대 12 사이클 절감할 수 있는 것을 확인하였다.

다중 희소 행렬-행렬 곱셈 하드웨어 가속기 연구 (Study on Multiple sparse matrix-matrix multiplication hardware accelerator)

  • 김태형;조영필
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.47-50
    • /
    • 2024
  • 희소 행렬은 대부분의 요소가 0 인 행렬이다. 이러한 희소 행렬-행렬 곱셈을 수행할 경우 0 인 데이터 또한 곱셈을 수행하니 불필요한 연산이 발생한다. 이러한 문제를 해결하고자 행렬 압축 알고리즘 또는 곱셈의 부분합의 수를 줄이는 연구들이 활발히 진행 중이다. 하지만 현재의 연구들은 주로 단일 행렬 연산에 집중되어 있어 FPGA(Field Programmable Gate Array)와 특정 용도로 사용하는 가속기에서는 리소스를 충분히 활용하지 못해 비효율적이다. 본 연구는 FPGA 의 모든 리소스를 사용하여 다중 희소 행렬 곱셈을 수행하는 아키텍처를 제안한다.