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A Study on Circular Filtering in Orthogonal
Transtorm Domain

Bong Seop Somg and Sang Uk Lee

Abstract

In this paper, we dicuss on the properties related to the circular filtering in orthogonal transform domain. The efficient
filtering schemes in six orthogonal transform domains are presented by generalizing the convolution-multiplication property of
the DFT. In brief, the circular filtering can be accomplished by multiplying the transform domain filtering matrix W, which
is shown to be very sparse, yielding the computational gains compared with the time domain processing. As an application,
decimation and interpolation techniques in orthogonal transform domains are also investigated.

I. Introduction

Recently, orthogonal transforms have received considerable
interests, due to their various applications in digital signal
processing areas.

For example, it is well known that the digital filtering can
often be implemented more efficiently by an indirect
computational procedure in orthogonal transform domain,
which is called the generalized linear filtering[6].

The generalized linear filtering is a technique which
computes linear operations indirectly utilizing orthogonal
transforms, instead of direct computation in time domain.
Figure 1 shows a block diagram of the technique. In the
generalized linear filtering, the NX1 input vector X
undergoes an orthogonal transformation, resulting in a vector
of NX1 transform coefficients X. Then, the coefficients are
multiplied by an NX N transform domain filtering matrix W,
and an inverse orthogonal transformation is performed to
obtain the NX1 output vector y. Note that the savings in
computation is obtained in the second step. The efficiency of
the generalized linear filtering depends on the sparseness of
the transform domain filtering matrix W. In other words, the
matrix W should have many zero elements for the
generalized linear filtering technique to be effective. In this
paper, based on the generalized linear filtering, we shall
investigate the properties related to the circular filtering in
orthogonal transform domain.
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Fig. 1. The block diagram of generalized linear filtering.

It is well known that the discrete Fourier transform(DFT)
possesses a convolution-multiplication property. More
specifically, a circular convolution of two finite sequences
can be implemented efficiently by means of a transform
domain muitiplication, since the matrix W for the DFT is
diagonal. Unfortunately, this property does not hold for other
orthogonal transforms, such as the DCT and the DST(discrete
sine transform), and the circular filtering technique in general
orthogonal transform domain has not been reported yet.

There are several works relating to the filtering in the
DCT domain[1,2,3], but these works failed to provide an
exact circular filtering in the DCT domain, since the
approaches are based on the approximations. In 4], global
structures to implement the linear filtering in transform
domains were proposed. Recently, symmetric filtering
techniques in the DCT and the DST domain were also
reported[5]. However, to our best knowledge, a technique

-for exact circular filtering in orthogonal transform domain

has not been shown yet.

In generalized linear filtering technique, the elements of
the matrix W are functions of the basis of the orthogonal
transform and the filter coefficients. Thus, the approach in
this paper is to derive the elements of the matrix W for each
orthogonal transform. We consider six orthogonal transforms:
DCT, DST, Hartley transform, Hadamard transform, Haar
transform, and Slant transform. Since the computational
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efficiency of the generalized linear filtering depends on the
sparseness of the matrix W, we specifically focus our effort
to identify the zero elements in the matrix W.

It will be shown that, in fact, there. exist many zero
elements in the matrix W, indicating that the generalized

linear filtering technique can often be implemented more

efficiently than the direct computation in time domain. To
say briefly, the highest efficiency is achieved in the Hartley
transform domain, since the matrix W is a diagonal matrix.
Also, for the DCT and Hadamard transform, the matrix W’s

are observed to be very sparse, compared to other transforms,

yielding the computational gains.

This paper is composed of three sections. First, we
describe a transform domain filtering matrix W for a circular
filtering in orthogonal transform domain in section IL
Secondly, the circular filtering techniques in six orthogonal
transforms is presented, together with the comparison of their
complexity, in section III. To demonstrate the application,
decimation and interpolation techniques in orthogonal
transform domains is_discussed in’ section IV, and the
conclusions are drawn in section V.

I1. Transform Domain Filtering Matrix

The generalized linear filtering concerned in this paper is
a circular filtering in orthogonal transform domain. The
orthogonal transform is obtained by multiplying NXN
transform matrix 7, which is composed of orthonormal basis
vectors ¢;’s in each column. The circular filtering can also

be represented in terms of vector-space notation, given by

y=Hx 1)

where x is the input vector of length N, H is the NXN
circular filtering matrix, and y is the filtered output of the
same length as x. The circular filtering matrix H is given by

Chy Ry oL hox O 0 hy hy- . . by
By ke by . hecioy hox 0. - 0 hy .. hy

H= ’
k) . . h_g 0 . .0 hy hy

2

where % ,’s are the filter coefficients.

It is not easy to deal with the matrix H in terms of
elements.. For the sake of convenience, we define a useful
circular shift vector operator. For a given vector f of length

N, let }" be the vector whose elements are kth circular
shifts of vector f’s as follows:

| |
f(l—lz+N), ifl<k
7= S ®
fa-n, iflzk

Then, we can easily express the matrix H as

H=[h & - "] @
where h=1[hy - hy0 -0 h_g- - h~!1]-
i
i

. T
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Fig. 2. Circular filtering in orthogonal transform dcmain.

By denoting the transformed input and output by N X1
vector X and Y, respectively, Figure 2 shows the block
diagram for circular filtering in general orthogonal transform
domain[4], "which consists of three stages : inverse
transform, filtering in time domain, and forward transform.
Thus, the relation between the input vector X and the output
vector Y is given by

! )
where
W= THT . L (6)

It is seen that the transform domain filtering matrix W
completely specifies the filtering in each orthogonal
transform domain. Thus, to find the elements w; of the

matrix W, let us begin with the following relations, given by

W= [ to. tya] T E" ")

)]
. [ tO"' _tNAI]
Then, 4
w =[ ti- kit El L EN_I ] t;
=[ti-h Em- b Ep-R)- ¢ ®

=(ty titty Epvato iy Ep) B

but, it is equivalent to

wy = Kh(k)(tﬂtzk+t11ti(k+l) + Idots + £ jtu— 1)t ite—1))

k=

Mz 'Mx

h(Ra (i.7)
K

1t

where a,;,=( t;- Z},.) A

Thus, the elements of the matrix W are represented by
linear combination of filter sequences, while the combination
coefficients a,(7,5)’s are expressed on!y in terms of the

transform bases. Thus, the circular ﬁlterixig in each transform
domain can be characterized by examining the ¢ ,(i,/)’s .

i
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IMI. Circular Filtering in Orthogonal
Transform Domain with Linear Phase
FIR IFilters

Since the filters with linear phase are desirable for image
processing[6], in this paper, we consider 4 different types of
linear phase FIR filters, namely OS, ES, OA, and EA[7],
which are described in Table 1.

Table 1. Linear phase FIR filters.

type length symmetry

oK +1(M = K) | h(k) = h(—k)

L=
2AES) | L =2K(M =K 1) | h(k) = h(—k — 1)

L=

L=

3(04) 2K +1(M = K) | h(k) = —h(—k)
HEA) | L=2K(M = K —1) | h(k) = —h(—k = 1) |

From the properties of linear phase filters, we can easily
obtain the w ;’s for 4 different types as shown in Table 2.

For an example, in the case of the type 1, it is easy to show
that

M ~
= 2 KR t;- £
k=—K

K
=0 t;- £)+ 2 bR £ - Lot ti £ (10)
K -~
=HO)X £+ t)+ X MR L, ot Epe t))
Thus, we have
K
w Z=: wka (i, 9, (11)
t, t,“ﬁ,-,-, k=0
where a,(i,/))= N
ti- BBt k0

type wi; ak(i.j)
» - ti=6; k=0
LOS) | T, hik)ar(i, ))
i+t k#0
2AES) | St Ak)an(i.)) LB BT
3(0A) | TR, h(klax(i, ) Lot
LEA) | TR hik)aili. ) BB
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It is seen that the linear combination coefficients are
obtained from the transform bases ¢;’s. Since we deal with
six different orthogonal transforms, the basis vectors for each
orthogonal transform are listed in Table 3.

Table 3. The basis vectors of orthogonal transforms.

Transform i

DCT /& cos( BHEUIT)

ko= /3 k=10 #£0)

& /2 (E+D) i+
DST \/AV+1 N1 )

sin(

Hartley Transform

\//};('cos( 1”[) + sm(Tl))
Hadamard Transform l

Haar Transform recursive

Haar Tra;nsform L J

Now, let us investigate the properties relating to the
circular filtering in each transform domain in more detail.

Before we attempt to derive the linear combination
coefficient « ,(i,7), it should be noted that if for a specific
¢ and j°, a(i",7")’s are zeros for all k, the element w .-
of the matrix W is always zero, regardless of h(k) from (11).
In this way, we can identity the zero elements of the matrix
W easily.

1. DCT domain

Let us examine the coefficient g,(7,;) for the type 1 filter
in the DCT domain first. We now start from the relation
given by

ali,f) = t;> Ipt Fa- t;

% k ( 2 05 ( (Zl‘f‘l)iﬂ' Yeos (Z(N_’%;D +1)j7r)
+ gf cos( (21;1\})1'7:) 0s (20= k)+1?]7r)

i
§ s (2(N—k+l)+1)ur)cos( (21;1\1[)]”

+ 2
N= 1y:

- k)+1)z7r (21+1)jr

+ [=kco s ( Jeos (HH5)
(12)

Using the following relations:
3% sin(ai+ )= 72— sin(-% )sin (-2 )sin (-LSEE. 4 1)
Izj cos(al+b)= 305(1 sin(-% 3 )sin( aL)cos(M+b) .
where L = E-S+1, we can simplify (12).
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If i equals to j, it is easy to show that

Ncos( ) 1= even
ai, )= ’ (14)
(N-2k) cos( ) i=odd.

Otherwise, with some algebraic manipulations, a(7,;) is
expressed as

ali,) =Alk, i,J)cos(—(i—JrlMHB(k i;)cos(—(%l)l) (15)

= C(k, i, j)sin(E )+D(k i i)sm(—l—) 16)
where
Alk i) = 1—-005(2 HI;] 5 sin( ("Z’%”‘){sm( k(izx,’)”)cos( (N*’E)j(vi_ﬂ”)_
+ cas(HDI g ((N=BUikir )
Blkid = (,_g,, sin( L2 i (MU= oo W=R i)

1-cos(

(gﬂ-z)n) ( (N— k)jt—z)ir))

Clhyij) = ———Le (H, hsm(—(%&g)m(—%ﬂl)cos(ﬂﬁm)

1—cos(

(== Li—x AN—2R)j
A ("Iva”)sm( R Yoos (LR yeos (“ESERIE,

D(k,i,))

#in( (izixl)rr)cos( (Hél)n)c()s( (N;JZVM)

1-cos(

2
(i+i)7r)
N

2 o i=Dr (i—Drn (N-2R)in
ot (i;)”)sm( IN )eos ( 5 Jeos( N )

From the properties of sine and cosine functions, (15) and
(16) imply

w;=0 , if i=even or j=even, and i*j. (17)

Thus, the circular filtering with the type 1 filters in the
DCT domain can be carried out, according to the relation

W X (M)

, M= even

Y(m)= (18)

N
-5 -1

2

20 w,,,(2,+1)X(2j+1) ,m= odd.
j=

Similarly, the matrix W for other three filter types are
easily found, which are presented m Table 4. The results
show that there exist many zero elements in the matrix W for
each type of filter, making the matrix W sparse. Thus, the
circular filtering in the DCT domain provides some
computational gain over the direct timé domain processing.
Especially, in the case of type 1 filter, it is seen that about

—2— of the elements in the matrix W are zeros and in the case
of type 2 filter, about % of the elements are zeros.

However, type 2 and type 4 filter yield less zero elements.

Table. 4. Circular filtering in the DCT domain. E(sven
number), D(odd number) !

t zero elements : Y(m)

. i=FE,i#j WmmX(m) ! L E
: S ¥ e
J=E,i#] Tito Wme+npX{27+1) D

‘LUOQ.X'(O) : .0
1=0 v e ’

N Tiet wmi X (5)! D

Wmm X (M)
Ly=D,i#) 1 o

T X0 WmeenX(25+1) L E
r=F£, )= ’ ’

0 ,0

' t=D,)=D ¥, o

3 0 Lz Wmi)X(27) D
b= - o :

] Zf:ol U«'m(2;‘+1)f‘i(2J +1) E.
J=0 :
0 i L0
=0 v
i e X(5) .D
4 j=0 = e
: wmm,\f('m) '
Li=FE 1#)

. I-1 ' 4
+ k0 wm('lj+1?-Y(2] +1) D

2. DST domain
In the DST domain, we use the same approach as in the

DCT domain. For an example, with the type 1 filters, the
a (i,7) is represented as

ali,j) = ti- Zj‘+ | FUR ¥

— A (B (LG

N

+ E:sin( (1+}3$ik1)7r Ysin( ‘(l—k}l\-,]:z(lj?}-l)”) 19
* gsm(MﬁuﬁM)sm(

(N=p++D Gt 1x
TN+

(/+i)(z‘+1)n)
N+

N-1 _ . .
+ Eﬁi“(ﬂ k‘]f;l2(11+l)ﬂ)sin( (1+}3(+;£r1)7r)

which is simplified into ‘
a5, )= A, 7, Deos (UDE) 1 B, j, Beos (LUELEDT)

(20)

Notice that w; is zero if (iy) is (odd, even) or (even,
odd). ‘

In this manner, the locations of zero elements can be
identified and the circular filtering technique can also be
established, which are summarized in Table 5. Unfortunately,
in the cases of type 2 and type 4 filters, there exist no zero
element in the matrix W, implying that the DST domain
filtering provides no computational gains. However, for the

type 3 filter, the element in the matrix W.is zero, if (iy) is
!
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(even, even) or (odd, odd). Thus, for the type 1 and type 3
filters, half of the elements are zeros. Compared with the
DCT domain, the number of zero elements are smaller in the
DST domain, indicating that the DST domain filtering is less
effective than the DCT domain filtering.

Table 5. Circular filtering in the DST domain. E(even
number), D(odd number)

t zero elments Y{m)

F-1 I
Z;o wm(gj).X(‘Zj) JE
b )

E
Tio WmzjenX(2) +1) L D.
o
E

It
It

R
I

It

¥ T
Zj‘:o Win(2)X (25)

&g
im0 wme+nX(27+1) L E.

1

T o M
It

O &mim o

A
il

It

no elements v o W X ()

=t

3. Hartley transform domain

In the Hartley transform domain, the relations for the
coefficients a (7, )’s are easily obtained in the closed forms.
From Table 3, the basis vector ¢, for the Hartley transform
is given by

\/—(COS( 2m1)+sn( 27!'1[))

=| a0

So, it is easy to show that the circular shift is represented
by

@D

L= tiu-n. 22)
Also, the inner product between ¢, and  f . is simplified
as
tie Epo=tic tien

(23)

ik _

cos ( N ) L i=

=|sin(-ZL) itj=N, i+
0 , Otherwise.

From (23), the linear combination coefficients « (i, 7)’s

are easily obtained for all filter types. For example, in the
type 1 filter, the relation is given by

ali,) = ti Ipt+ Ep- t;
24

ZCOS( Zﬂ'lk)

0 , Otherwise.

Note that the relation (24) indicates that the matrix W is
diagonal. Thus, only N multiplications are required to carry
out the circular filtering.

In the similar manner, the linear combination coefficients
for other types are easily derived. The results are shown in
Table 6. For the type 3 filter, only N multiplications are
required to obtain the filtered output vector, while for the
type 2 and type 4 filters, about 2N multiplications are
required.

Table 6. Circular filtering in the Hartley transform

domain.
type ax(i,j)
. Zcos(g‘}jk) 1=
0 ,otherwise.
2cos( BTy cos(F)  i=j# 5
2 2 COS((%K})”)SIH(N) i+ j=N
0 . ,otherwise.
] 75111(”\}“) i+ j=N
| 0 , otherwise.
QSin((—z—kﬁ,—”’.'—T)sin(%ﬁ) d=7#0
ol 2sin(BF ) cos(R) it g =N
0 ,otherwise.

4. Comparison -

In the cases of Hadamard, Haar, and Slant Transforms, the
closed forms for the basis vectors are not easy to obtain,
since their transformation matrices are determined
recursively. So, to inspect the structure of their filtering
matrices, first we should calculate the transformation matrix
T with the specified block size N. Then, from the calculated
basis vectors, all the linear combination coefficients «,(i,7)’s

are obtained, according to the relations given in Table 2, and
the zero elements are then easily identified.

In Figure 2, for N=8, the matrix W’s for six orthogonal
transforms are shown as an example. In the Figure, ‘o’
represents the position of zero elements. It is noted that the
positions of the zero elements are fixed, if the transformation
and the filter type are given. As discussed previously, if the
matrix W is sparse, then the generalized linear filtering saves

the computational complexity, compared to the time domain
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filtering. In this context, the Hartley transform provides the
best computational gain, followd by the DCT and the
Hadamard transform. In the case of the DST, the generalized
linear filtering is not so efficient as the time domain filtering.
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Fig. 3. The from of transform domain filtering matrices.

The comparison of computational complexity among each
transform domain filtering is presented in Table 7, where «
represents the number of required additions per block, and
represents the number of required multiplications per block,
respectively. Note that in case of the Hartley transform, at
most 2N multiplications are required for circular filtering,
making the generalized linear filtering very effective. For the
DCT, the required multiplications with the type 1 filter are

2
about %, which is proportional to the block size N. But,

the computational efficiency improves as the block size
decreases. For the DST, since the computational loads are
much higher than the DCT, the computational savings are not
expected. i

The sparseness of the matrix W in the proposed filtering
technique can be explained as follows. As is discussed

|

previously, the linear combination co;efﬁcients a (2, 7)’s,
which are obtained by the basis vectors, characterize the
elements in the matrix W. The orthogt;mality of the basis
vectors and the symmetry of the filters make many
combination coefficients zero, yielding the sparse W matrix.
In the generalized linear filtering, it also fshould_ be noted that
the computational complexity is not dependent on the length
of filters, while the computational  complexity of the direct
time domain processing increase as the length of the filters
increase. Thus, the generalized linear filtering is
advantageous for the filter of large length.

Table 7. Comparison of required computations.

DFT DCT Hariley
type | domain domain déhlaih domain
1le 0 lflj\[ (—\2/—— LN 0

gl N Iy N | N
2lal 0 AND (N:—l)N N -2
wl N WEN N? 2V -3

U N (5 - 1N %_'V N -2

4| o 0 AN v (N-DN| N-2
; N-2 7 3 A7

L N W=ty N? 2N -3

IV. Decimation and Hnteﬁ‘poﬂatﬁon in
orthogonal transform domain

In this section, we. shall discuss about one specific
application of the circular filtering technique in orthogonal
transform domain : the decimation(subsampling) and
interpolation(upsampling). For the sake of simplicity, we
shall consider only 2:1 decimation and 1:2 interpolation in
this paper. However, the technique can be easily extended to
M:1 decimation and 1:M interpolation, respectively.

Figure 4 shows the block diagram for the transform
domain decimation.

Input Inverse Zero Filteri - Forward Output
— Transt;orm —> Padding e : tflnng —® Transform [——
Taz Z A T«

Fig. 4. The procedure of transform d;oma'm decimation
scheme.
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The input and output are NX1 and LZV x1 vectors of

transformed coefficients, respectively. The relation between
the input and the output can be expressed as

Y=T ySHT} X, 25)
2

where S is the ¥ x N selection matrix, given by

2
1000...0
60o010...0

00 ...010

T y is the 1—2\[ X LZV transform matrix, and Ty is the N
2

X N transform matrix, respectively.

Now, we shall define an % x N transform domain

decimation matrix D as

D=T ySHT}. -(26)
2

To analyze the decimation, let us pay our attention to the
elements of the matrix D. As in the generalized linear
filtering, the sparseness of matrix D determines the efficiency
of the transform domain decimation.

For convenience, let us define even selection vector
operator ,f and odd selection vector operator | f,

respectively, as
Ji= Fon
F 1 = fam.

Then, the element of matrix D, 4, can be derived in the

@

same manner as w; which are shown in Table 8. Notice
that the filters used for decimation is a lowpass filter. So,
among linear phase filters, type 1 and type 2 are possible
choices.

loput | fpyerse Anii-aliasing Down Forward | Output
—! Transform [—®| Filtering [~ Sampling [ Transform
. Tx H S T

Fig. 5. The procedure of transform domain interpolation
scheme.

In the same manner, we can derive the interpolation
schemes in orthogonal transform domain. In Figure 5, the

Nx sz transform domain interpolation matrix U is expressed

as

U= TNHZT;, 28)

where Z is the Nx - zero padding matrix, which is the

2
transpose of the matrix S.
Table 8 lists the properties of the elements #;’s of the

matrix U with the linear phase filters.

Table 8. The elements of matrix D. E(even), D(odd).

; dij ax(7,7)
Q‘ eLj ,:l\f =0
R PETEN « Lk Lk
U Eicooeleg)h(k) [ g o8] + g7 - ot k=E
ey k=L
g; ofi0 g7 ol k=D
Lk £
o - gi'et2+gf'o£j sk:E
2| T anlis 1)ALK) e e
Ql oéjl +Q12 Btj 71“:D

XXOKDXOXOXOXOXQKq
OXXXXXXXXXXXIXXXKX
OXXXOXOXOXOX0OXXX
OXXXXXXXXXXXXXXX
OXOXXXO0OXO0XO0XXX0X
OXXXXXXXXXXXXXXX
OXOXOXXXOXXXOXO0X
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Fig. 6. The structure of matrix D.
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In Figure 6, for N=16, the structure of the matrix D for

six orthogonal transforms are shown as an example. Note
that there exist many zero elements in the matrices, which
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determine the efficiency of the transform domain decimation.
In the DCT domain, with the type 1 filter, there are small
numbers of zero elements in the matrix D. However, the
matrix D is very 'sparse for the type 2 filter, yielding the

computational savings. More specifically, about % of the

elements in the matrix D are zeros, indicating that about
2

—%/— multiplications are required for the decimation. In the
case of the Hartley transform, the cbmputational efficiency is
distinct. It is seen that only N multiplications are required for
the type 1 filter and less than 2N multiplications for the type
2 filter. The sparseness: of the matrix D for the Hadamard
transform is also noticeable. With the type 2 filter, more
computational gain is achieved than with the type 1 filter.

The matrix U has the same number of zero elements as
the matrix D, which can be easily verified. So, the
computational complexity for the transform domain
interpolation are same as that of the decimation.

The transform domain decimation/interpolation technique
can be easily incorporated into the SBC-DCT coding
techniques[8, 12]. The SBC-DCT coding technique is one of
the popular image compression techniques, since it alleviates
the visually annoying blocking effect and provides high
energy packing efficiency. In general, the SBC-DCT coding
technique is composed of five steps: analysis filtering, the 8
X8 DCT, quantization, 8 X8 IDCT, and synthesis filtering.
Note that in the first and final steps, the decimation and
interpolation are carried out, respectively. However, for the
purpose of layered coding, 16X 16 DCT together with the
blockwise subband decomposition has been also proposed[10
1, which is known to be very effective in the prioritized
ATM networks. We are concerned with the blockwise
subband decomposition technique in this paper. Instead of the
time domain processing, the DCT domain decimation and
interpolation can be utilized, combined with the 16 X 16 DCT
as shown in Figure 7. First, the input image is transformed
by the 16X16 DCT, followed by the DCT domain
decimation as an analysis step, which yields 2 X2 subband
coefficients. Then each band is quantized, respectively. In the
decoding, the DCT domain interpolations are carried out as
synthesis filtering, followed by the 16X 16 IDCT.
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Fig. 7. Subband coding using DCT domain decimation/
interpolation.

Table 10 shows the numbers of reiquired multipliéations
and additions per pixel in each step. In' Table 10, the DCT’s
are assumed to be implemented by a fa:st algorithm[11]. The
Johnston’s 12-tab filters[9] are chosen in the analysis and
synthesis step. Compared with the conventional im-
plementation, the computational complexity is slightly in-
creased in the DCT and the IDCT, but considerable
computational savings can be achieved in the analysis/
synthesis filtering step by utilizing the DCT domain
decimation/interpolation technique. Conclusively, about 30
percents of the computational compleiity can be saved.

. Table 9. Elements of the matrix U: E(even), D(odd).
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Table 10. Required numbers of multiplications and
additions in subband coding schemes.
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V. Conclusion

In this paper, based on the generalized linear filtering, we
have provided an exact circular filtering téchniquc in the
orthogonal transform domains. The computational efficiency
of the proposed filtering technique has' also been intensively
investigated. The results show that thef circular filtering can
be efficiently implemented in the Hartley transform, the DCT
and Hadamard transform domains. As an application of the
filtering, decimation and interpolation techniques in
orthogonal transform domains have been presented, ‘which is
suitable to the SBC-DCT coding techniques. _

The conventional DCT filtering techr;iques[l,2,3] have not
implemented the exact circular filtering, since they are based

on the approximation. However, the proposed technique
i
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implements the circular filtering in orthogonal transform
domains exactly. Moreover, compared to the time domain
processing, this technique achieves much computational
savings. It will furnish new applications for the orthogonal
transforms, such as applications to the perfect filter banks
and image compression techniques. However, further studies
are necessary to make use of the circular filtering technique.
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