• Title/Summary/Keyword: Spark Plasma Sintering (SPS)

Search Result 199, Processing Time 0.03 seconds

Comparative Studies of Different Thermal Consolidation Techniques on Thermoelectric Properties of BiTeSe Alloy (BiTeSe 합금의 열적성형방법에 따른 열전특성)

  • Sharief, P.;Dharmaiah, P.;Lee, C.H.;Ahn, S.S.;Lee, S.H;Son, H.T;Hong, S.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.126-134
    • /
    • 2018
  • In this research, we produced polycrystalline n-type $Bi_2Te_{2.7}Se_{0.3}$ powder using water atomization. To obtain full benefit through water atomized powder, we have implemented spark plasma sintering and hot extrusion for powder compaction. The microstructure and thermoelectric properties were investigated and compared. The average grain size of SPS and extruded bulks were 3.08 and $3.86{\mu}m$ respectively. The extruded material microstructure contains layered grains with less grain boundaries and its counter-part SPS displays dense packed grains with high grain boundaries. Among both bulks, extrusion sample exhibited high power factor (PF) of $2.96{\times}10^{-3}Wm^{-1}K^{-2}$ which is 38% higher than SPS ($2.14{\times}10^{-3}$) bulk sample. Due to variations in grain size and grain boundaries, the SPS bulk shows low thermal conductivity than extruded bulk. However, the extruded bulk sample exhibited a peak ZT of 0.69 at 400 K, which is 19% higher than SPS bulk sample, due to its higher power factor.

In-situ Synthesis of Cu-TiB2 Nanocomposite by MA/SPS

  • Kwon, Young-Soon;Kim, Ji-Soon;Kim, Hwan-Tae;Moon, Jin-Soo;D.V Dudina;O.I. Lomovsky
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.443-447
    • /
    • 2003
  • Nano-sized $TiB_2$ was in situ synthesized in copper matrix through self-propagating high temperature synthesis (SHS) with high-energy ball milled Ti-B-Cu elemental mixtures as powder precursors. The size of $TiB_2$ particles in the product of SHS reaction decreases with time of preliminary mechanical treatment ranging from 1 in untreated mixture to 0.1 in mixtures milled for 3 min. Subsequent mechanical treatment of the product of SHS reaction allowed the $TiB_2$ particles to be reduced down to 30-50 nm. Microstructural change of $TiB_2$-Cu nanocomposite during spark plasma sintering (SPS) was also investigated. Under simultaneous action of pressure, temperature and electric current, titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a interpenetrating phase composite with a fine-grained skeleton.

Synthesis of graphene nano-sheet without catalysts and substrates using fullerene and spark plasma sintering process

  • Jun, Tae-Sung;Park, No-Hyung;So, Dea-Sup;Lee, Joon-Woo;Lim, Hak-Sang;Ham, Heon;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.27-30
    • /
    • 2013
  • Catalyst-free graphene nano-sheets without substrates have been synthesized using fullerene and a high direct current (dc) pulse in the spark plasma sintering (SPS) process. Graphene nano-sheets were synthesized directly in the gas phase of carbon atoms which are generated from fullerene at a temperature of $600^{\circ}C$. Characterization has been carried out by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).

Investigation of Ball Size Effect on Microstructure and Thermoelectric Properties of p-type BiSbTe by Mechanical Alloying

  • Lwin, May Likha;Yoon, Sang-min;Madavali, Babu;Lee, Chul-Hee;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.120-125
    • /
    • 2016
  • P-type ternary $Bi_{0.5}Sb_{1.5}Te_3$ alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300-400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.

Synthesis and Characterization of Soft Magnetic Composite Powders in Fe2O3-Zn System by Mechanical Alloying (기계적 합금화법에 의한 Fe2O3-Zn계 연자성 복합분말의 제조 및 특성평가)

  • Lee, Chung-Hyo
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.74-80
    • /
    • 2020
  • Synthesis of composite powders for the Fe2O3-Zn system by mechanical alloying (MA) has been investigated at room temperature. Optimal milling and heat treatment conditions to obtain soft magnetic composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that α-Fe/ZnO composite powders in which ZnO is dispersed in α-Fe matrix can be obtained by MA of Fe2O3 with Zn for 4 hours. The change in magnetization and coercivity also reflects the details of the solid-state reduction process of hematite by pure metal of Zn during MA. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at 900 ~ 1,000 ℃ under 60 MPa. Shrinkage change after SPS of sample MA'ed for 5 hrs was significant above 300 ℃ and gradually increased with increasing temperature up to 800 ℃. X-ray diffraction results show that the average grain size of α-Fe in the α-Fe/ZnO composite sintered at 900 ℃ is in the range of 110 nm.

Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Solid Oxide Fuel Cell Anode Fabricated by Spark Plasma Sintering (플라즈마 소결법을 이용한 고체산화물 연료전지 음극 제조 시 소결온도에 따른 미세구조 및 물성평가)

  • Song, Byung Ju;Kim, Ka Ram;Kim, Hye Sung
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.425-431
    • /
    • 2013
  • Microstructural and mechanical properties of Ni-YSZ fabricated using SPS processing have been investigated at various sintering temperatures. Our study shows samples to be applied as a SOFC anode have the proper porosity of 40% and high hardness when processed at $1100^{\circ}C$. These results are comparable to the values obtained at $100-200^{\circ}C$ higher sintering temperature reported by others. This result is important because when the fabrication processes are performed above $1100^{\circ}C$, the mechanical property starts to decrease drastically. This is caused by the fast grain coarsening at the higher temperature, which initiates a mismatch between thermal expansion coefficients of Ni and YSZ and induces cracks as well.

방전플라즈마 소결에 의한 SiC-$ZrB_2$ 복합체 개발

  • Kim, Cheol-Ho;Sin, Yong-Deok;Ju, Jin-Yeong;Lee, Jeong-Hun;Lee, Hui-Seung;Kim, Jae-Jin;Lee, Jong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.87-87
    • /
    • 2009
  • The composites were fabricated by adding 30, 40, 50, 60[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. SiC-$ZrB_2$ composites were sintered by Spark Plasma Sintering(hereafter, SPS) in argon gas atmosphere. The relative density SiC+30[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$, SiC+50[vol.%]$ZrB_2$ and SiC+60[vol.%]$ZrB_2$ composites are 94.98[%], 99.57[%], 96.58[%] and 93.62[%] respectively.

  • PDF

SPS에 의한 $SiC-ZrB_2$ 복합체의 특성에 미치는 분위기 영향

  • Kim, Cheol-Ho;Sin, Yong-Deok;Ju, Jin-Yeong;Lee, Jeong-Hun;Park, Jin-Hyeong;Jo, Seong-Man;Kim, In-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.105-105
    • /
    • 2009
  • The composites were fabricated by adding 30, 35, 40, 45[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. $SiC-ZrB_2$ composites were sintered by Spark Plasma Sintering(hereafter, SPS) in vacuum or argon gas atmosphere. The relative density of SiC+40[vol.%]$ZrB_2$ composites reveal high 99.57[%] in argon gas atmosphere and pressure 50MPa.

  • PDF

Characterization of Hydrothermally Synthesized $BaTiO_3$ Powder and Spark Plasma Sintering(SPS) (수열합성 법에 의한 $BaTiO_3$ 분말제조 및 방전 플라즈마 소결)

  • 이정수;이완재
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • $BaTiO_3$ fine powder was synthesized by hydrothermal process from the mixture of titania-hydroxide($TiO_2{\cdot}xH_2O$) and barium hexa-hydroxide ($Ba(OH)_2{\cdot}8H_2O$) as starting materials. Fine powder(< 100 nm) was made under the reaction conditions of 18$0^{\circ}C$,10 atm, 1.5 hr in autoclave and showed cubic structure. The powders were sintered by a spark plasma sintering technique from 1050~115$0^{\circ}C$ for 5 min. The grains of sample sintered at 110$0^{\circ}C$ were about 0.9${\mu}m$ in average size and showed the mixture of cubic and tetragonal structures.

  • PDF

Sintering Characterization of Ti Powder Prepared by HDH Process (HDH공정에 의한 티타늄 분말제조 및 소결특성)

  • Choi, Jung-Chul;Chang, Se-Hun;Cha, Young-Hoon;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.55-60
    • /
    • 2009
  • In this study, Ti powder was fabricated from Ti scrap by a hydrogenation-dehydrogenation (HDH) method. The Ti powders were compacted by Spark plasma sintering (SPS) and the microstructure and mechanical properties of the powders were investigated. A hydrogenation reaction of Ti scrap occurred at temperatures near $450^{\circ}C$ with a sudden increase in the reaction temperature and a decrease in the pressure of the hydrogen gas as measured in a furnace during the hydrogenation process. In addition, a dehydrogenation process was carried out at $750^{\circ}C$ for 2hrs in a vacuum of $10^{-4}torr$. The Ti powder sizes obtained by hydrogenation-dehydrogenation and mechanical milling processes were in the range of $1{\sim}90{\mu}m$ and $1{\sim}100{\mu}m$, respectively. To fabricate Ti compacts, Ti powders were sintered under an applied uniaxial punch pressure of 40 MPa at in a range of $900{\sim}1200^{\circ}C$ for 5 min. The relative density of a SPSed compact was 99.6% at $1100^{\circ}C$, and the tensile strength decreased with an increase in the sintering temperature. However, the hardness increased as the sintering temperature increased.