DOI QR코드

DOI QR Code

In-situ Synthesis of Cu-TiB2 Nanocomposite by MA/SPS

  • Kwon, Young-Soon (Research Center for Machine Parts and Materials Processing, University of Ulsan) ;
  • Kim, Ji-Soon (Research Center for Machine Parts and Materials Processing, University of Ulsan) ;
  • Kim, Hwan-Tae (Research Center for Machine Parts and Materials Processing, University of Ulsan) ;
  • Moon, Jin-Soo (Research Center for Machine Parts and Materials Processing, University of Ulsan) ;
  • D.V Dudina (Institute of Solid State Chemistry and Mechanochemistry, SB RAS) ;
  • O.I. Lomovsky (Institute of Solid State Chemistry and Mechanochemistry, SB RAS)
  • Published : 2003.12.01

Abstract

Nano-sized $TiB_2$ was in situ synthesized in copper matrix through self-propagating high temperature synthesis (SHS) with high-energy ball milled Ti-B-Cu elemental mixtures as powder precursors. The size of $TiB_2$ particles in the product of SHS reaction decreases with time of preliminary mechanical treatment ranging from 1 in untreated mixture to 0.1 in mixtures milled for 3 min. Subsequent mechanical treatment of the product of SHS reaction allowed the $TiB_2$ particles to be reduced down to 30-50 nm. Microstructural change of $TiB_2$-Cu nanocomposite during spark plasma sintering (SPS) was also investigated. Under simultaneous action of pressure, temperature and electric current, titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a interpenetrating phase composite with a fine-grained skeleton.

Keywords

References

  1. J. Lee, J. Y. Jung, E.-S. Lee, W. J. Park, S. Ahn and N. J. Kim : Mater. Sci. Eng. A277 (2000) 274. https://doi.org/10.1016/S0921-5093(99)00551-1
  2. J. P. Tu, N. Y. Wang, Y. Z. Yang, W. X. Qi, F. Liu, X. B. Zhang, H. M. Lu and M. S. Liu : Mater. Lett. 52 (2002) 448. https://doi.org/10.1016/S0167-577X(01)00442-6
  3. E.Yuasa et al. : Powder Metall. Vo!.35, 2 (1992) 120. https://doi.org/10.1179/pom.1992.35.2.120
  4. C. Biselli, D. G. Morris and N. Randall : Scripta Metall.Mater. Vol.30, 10 (1994) 1327. https://doi.org/10.1016/0956-716X(94)90267-4
  5. S. J. Dong, Y. Zhou, Y. W. Shi and B. H. Chang: Metall.Mater. Trans. A Vol.33A, Issue 4 (2002) 1275. https://doi.org/10.1007/s11661-002-0228-9
  6. A. G. Merzhanov : Solid-state combustion (Chernogolovka, ISMAN, 2000, in Russian).
  7. D. R. Clarke : J. Am. Ceram. Soc. 75 (1992) 739. https://doi.org/10.1111/j.1151-2916.1992.tb04138.x
  8. W. Zhou, W. Hu and D. Zhang : Scripta Mater. Vol.39, 12 (1998) 1743. https://doi.org/10.1016/S1359-6462(98)00367-4
  9. A. V. Dobromyslov, R. V. Churbaev and V. A. Elkin : Fiz. Met. Metalloved. Vol.87, 2 (1999) 59.
  10. M. A. Korchagin, T. F. Grigorieva, A. P. Barinova and N. Z. Lyakhov: Int. Journal of High-Temp. Self-Propagating Synthesis. Vol.9, 3 (2000) 307.
  11. M. A. Korchagin, T. F. Grigorieva, B. B. Bokhonov, A. P. Barinova and N. Z. Lyakhov : VI Int.Symp.on Self-Propagating High-Temperature Synthesis, Haifa (2002) 14.
  12. M. Koidzumi : Chemistry of combustion synthesis (Mir, Moscow, 1998, translated from Japanese) 350.
  13. M. Tokita: J. Soc. Powd. Tech. Japan, Vol.30, 11 (1993) 790. https://doi.org/10.4164/sptj.30.11_790