DOI QR코드

DOI QR Code

Comparative Studies of Different Thermal Consolidation Techniques on Thermoelectric Properties of BiTeSe Alloy

BiTeSe 합금의 열적성형방법에 따른 열전특성

  • Sharief, P. (Division of Advanced Materials Engineering, Kongju National University) ;
  • Dharmaiah, P. (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, C.H. (Division of Advanced Materials Engineering, Kongju National University) ;
  • Ahn, S.S. (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, S.H (Korea Institute for Rare metals, Korea Institute of Industrial Technology) ;
  • Son, H.T (EV Components & Materials Group, Korea Institute of Industrial Technology) ;
  • Hong, S.J. (Division of Advanced Materials Engineering, Kongju National University)
  • ;
  • ;
  • 이철희 (공주대학교 신소재공학과) ;
  • 안수성 (공주대학교 신소재공학과) ;
  • 이상현 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 손현택 (한국생산기술연구원 동력부품소재연구실용화그룹) ;
  • 홍순직 (공주대학교 신소재공학과)
  • Received : 2018.05.03
  • Accepted : 2018.05.23
  • Published : 2018.05.30

Abstract

In this research, we produced polycrystalline n-type $Bi_2Te_{2.7}Se_{0.3}$ powder using water atomization. To obtain full benefit through water atomized powder, we have implemented spark plasma sintering and hot extrusion for powder compaction. The microstructure and thermoelectric properties were investigated and compared. The average grain size of SPS and extruded bulks were 3.08 and $3.86{\mu}m$ respectively. The extruded material microstructure contains layered grains with less grain boundaries and its counter-part SPS displays dense packed grains with high grain boundaries. Among both bulks, extrusion sample exhibited high power factor (PF) of $2.96{\times}10^{-3}Wm^{-1}K^{-2}$ which is 38% higher than SPS ($2.14{\times}10^{-3}$) bulk sample. Due to variations in grain size and grain boundaries, the SPS bulk shows low thermal conductivity than extruded bulk. However, the extruded bulk sample exhibited a peak ZT of 0.69 at 400 K, which is 19% higher than SPS bulk sample, due to its higher power factor.

Keywords

References

  1. H. J. Goldsmid, R. W. Douglas : Br. J. Appl. Phys. 5 (1954) 386-390. https://doi.org/10.1088/0508-3443/5/11/303
  2. Y. Du, K. Cai, S. Chen, H. Wang, S. Z. Shen, R. Donelson, T. Lin : Sci. Rep. 5 (2015) 1-6.
  3. D. Madan, Z. Wang, P. K. Wright, J. W. Evans : Appl Energy 156 (2015) 587-592. https://doi.org/10.1016/j.apenergy.2015.07.066
  4. C. Yang, D. Souchay, M. Kneib, M. Bogner, H. M. Wei, M. Lorenz, O. Oeckler, G. Benstetter, Y. Q. Fu, M. Grundmann : Nat. Commun. 8 (2017) 4-10. https://doi.org/10.1038/s41467-016-0012-y
  5. A. Chen, P. K. Wright : Medical Applications of Thermoelectrics. DOI: 10.1201/b11892-30.
  6. W. Shin, M. Nishibori, N. Izu, T. Itoh, I. Matsubara, N. Watanabe, T. Kasuga : Iop Conf. Ser.: Mater. Sci. Eng. 18 (2011) 4-8.
  7. C. Chang, L. Zhao : Mater. Today Phys. 4 (2018) 50- 57. https://doi.org/10.1016/j.mtphys.2018.02.005
  8. X. Zhang, Y. Pei : npj Quant. Mater. 2 (2017) 68. https://doi.org/10.1038/s41535-017-0071-2
  9. P. Dharmaiah, H. Kim, C. H. Lee, S. J. Hong : J. Alloys Compd. 686 (2016) 1-8. https://doi.org/10.1016/j.jallcom.2016.05.340
  10. M. Babu, H. S. Kim, K. H. Lee, S. J. Hong : J. Appl. Phys. 121 (2017) 225104 (1-8). https://doi.org/10.1063/1.4984914
  11. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren : Science 320 (2008) 634-638. https://doi.org/10.1126/science.1156446
  12. Y. Pan, T. Wei, Q. Cao, J. Li : Mater. Sci. Eng. B 197 (2015) 75-81. https://doi.org/10.1016/j.mseb.2015.03.011
  13. F. Wu, H. Song, J. Jia, X. Hu : Bull. Mater. Sci. 37 (2014) 1007-1012. https://doi.org/10.1007/s12034-014-0038-x
  14. M. Hong, T. Chasapis, Z. Chen, L. Yang, M. G. Kanatzidis, G. J. Snyder, J. Zou : ACS Nano 10 (2016) 4719-4727. https://doi.org/10.1021/acsnano.6b01156
  15. R. Zhai, L. Hu, H. Wu, Z. Xu, T. Zhu, and X. Zhao : ACS Appl. Mater. Interfaces. 9 (2017) 28577-28585. https://doi.org/10.1021/acsami.7b08537
  16. J. Ko, J. Kim, S. Choi, Y. Lim, W. Seo, K. H. Lee : J. MATER. CHEM. A 1 (2013) 12791-12796. https://doi.org/10.1039/c3ta12623d
  17. L. Hu, T. Zhu, X. Liu, X. Zhao : Adv. Funct. Mater. 24 (2014) 5211-5218. https://doi.org/10.1002/adfm.201400474
  18. G. Delaizir, G. B. Granger, J. Monniera, R. Grodzki, O. K. Hak, P. D. Szkutn, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, C. Navone : Mater. Res. Bull. 47 (2012) 1954-1960. https://doi.org/10.1016/j.materresbull.2012.04.019
  19. Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, L. Chen : Adv. Funct. Mater. 25 (2015) 966-976. https://doi.org/10.1002/adfm.201402663
  20. Z. Wang, K. Matsuoka, T. Araki, T. Onda : Procedia engineering 81 (2014) 616-621. https://doi.org/10.1016/j.proeng.2014.10.049
  21. B. Madavali, H. Kim, S. J. Hong : J. Electron. Mater. 43 (2014) 2390-2396. https://doi.org/10.1007/s11664-014-3077-6